《数学与人文》的首卷本登载了对主编的访谈,他们对本丛书的宗旨做了很详细的阐述。 在首卷本的“数学科学”、“数学星空”、“数海钩沉”、“数学魅力”、“数学教育”等栏目中,讲述了中外数学史和众多名家的生动故事、趣闻轶事,介绍了数学教学和学术研究中的经验体会,让读者看到了数学的趣味性、严谨性和它的无处不在。 《数学与人文》的创版适逢新中国成立60周年大庆,所以在首卷本中设立了新中国60年数学发展的专题。其中刊登了丘成桐教授撰写的“中国高等教育”一文,他从一个数学大师的角度纵横古今地畅谈了他所理解的中国高等教育的发展、现况、问题和展望;回顾了改革开放以来的中国数学会,讲述了国际数学家大会在我国召开的曲折过程;还介绍了三个数学分支(代数,数论,调和分析)的发展。 我们期望本丛书能受到广大学生和
本书为“专题史系列”之一。中国传统数学有着悠久历史,是中国传统科学文化百花园中的一朵奇葩,也是世界文化宝库中一颗璀璨的明珠。 本书分先秦至汉唐、宋辽金元、清中叶和清末等历史时期,分述算学家生平和自《九章算术》以迄《致曲术》等主要算学著作的内容,然后分数字与记数法、算具与算术、数的概念的扩展、几何问题与勾股测量、高次方程数值解法、天元术和四元术、高阶等差数列、同余式理论、八卦与幻方等方面叙述中国传统算学理论和计算方法等进行了叙述。同时,也叙及中国古代的算学教育和中外数学交流以及中国现代数学研究的发端。最后,对中国传统数学的基本特征作了概括性的探讨。
“数学与人文”丛书第八辑的主题为数学与求学。《数学与人文(第8辑):数学与求学》推出了有关求学和教育的四个专栏:包括“大师谈教育”,登载有丘成桐先生有关中国高等教育的访谈,李大潜院士关于创新人才培养以及严加安院士关于科学与艺术的精彩文章;“昔日辉煌”,介绍了陈建功的教育艺术和思想以及华罗庚教授在中国科学技术大学的数学教育活动;“数学之路”,讲述了陈省身教授领导下的加州大学伯克利分校几何组的发展以及几何学家F.Hirzebruch和投资家利宪彬的数学求学之路;“数学教学”,分别由应用数学家鄂维南教授、代数学家冯克勤教授和多年讲授数学文化课程的顾沛教授与读者交流他们各自的教学方法和心得体会。此外,本辑还为读者呈现了古代亚历山大的数学,并刊登有关数论中的基本算法的专业文章的后半部分。
本书是牛顿的科学才华处于很好时期所写的旷世巨著,是他“个人智慧的结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学之数学原理》之后,人类在自然科学中的成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学之数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
本书是MATLAB数学建模应用系列书籍之一,以MATLAB R2016a软件版本为基础,根据数学建模的需要编写,包含了多种数学建模问题的MATLAB求解方法,是解决数学实验和数学建模的有力工具。全书共18章,分为前后两个部分,~10章属于前部分,1~18章属于后部分。前部分从MATLAB基础和数学建模基础知识介绍开始,详细介绍MATLAB程序设计、常用MATLAB建模函数、数学规划模型、智能优化算法、Simulink简介、MATLAB图像处理算法等内容; 后部分介绍了水质评价与预测、投资收益与风险、旅行商问题、很优捕鱼策略、裁剪与复原、DNA序列分类、卫星和飞船的跟踪测控、中国人口增长预测等8个典型建模问题的MATLAB求解方法,引导读者深入挖掘各种建模问题背后的数学问题和求解方法。很后,在附录中给出了MATLAB基本命令的介绍,便于读者使用和研究。本书以MATLAB数学建模基础为主线,结
中国古代数学思想扎根于中国古人社会实践之中,体现着中国古代生产方式、生活方式和思维方式的特点。反过来数学思想也推动着生产和其他社会实践的发展,促进着中国古代文化的发展。《中国古代数学思想(珍藏版)》通过对中国数学思想产生的文化背景、历史文物以及古代典籍来探讨中国古代数学思想的产生、发展与挑战。
本书讲述了数学思想是指数学发展所依赖的思想,在本质上有三个:抽象、推理、模型,其中抽象是最核心的,高度的抽象性是数学的根本所在。本书中所说的数学思想不是指学习数学时所涉及到的思想,也不是解数学题时所涉及到具体的思想方法,而是指数学发展所依赖、所依靠的思想。
本书是奥博丛书之一。 本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。 这套奥博丛书,其中就有若干或许可以称为解题秘籍。当然,得到它之后,要成为解题高手,还得注意: 一、勤加练习,因为解题是实践性的技能,只能通过模仿和实践来学到它。 二、循序渐进,孔子说:“欲速则不达。”不能操之过急,一个问题或一种方法,弄清楚了,再往下看,切忌囫囵吞枣,食而不化。 三、不要迷信书本,“尽信书,则不如无书。”要成为真正的高手,不能依赖秘籍,而要自创新招。
《数学与人文》丛书第四辑将继续着力贯彻“让数学成为国人文化的一部分”的宗旨,展示数学丰富多彩的方面。《女性与数学》主题栏目“数坛巾帼”,通过部分女数学家的评传,以历史实例来引发对“女性与数学”这一社会课题的思考。特别是,本专栏刊登了两位活跃在现代数学前沿的女数学家的访谈录,她们的成长经历会引起读者的兴趣。 本辑“数海钩沉”栏目刊发丘成桐先生“清末与日本明治维新时期数学人才引进之比较”,以史为鉴,发人深省;“数学星空”栏目特约文章冯端院士“纪念冯康院士诞辰90周年”,真切感人;新辟栏目“数学人生”,刊数学家们探求真理的人生感悟与经验之谈,本辑特载国家科技奖获得者谷超豪先生激励人心的讲演“请勿歌仰止,雄峰正相迎”;“数学家诗词”栏目,为数学家开辟发表诗作的园地;“数学之旅”栏目,发
雷蒙德·怀尔德将数学视为一种广泛的文化现象,而不是对数学史或哲学进行调查。他研究并说明了诸如数字和长度等概念是如何受到历史和社会事件的影响的。本研究从初步的概念出发,探讨了数字的早期演变、几何的演变以及对无限的征服,并以真实数字为代表。通过对现代数学的进化方面的考察,对进化过程进行了详细的研究。
《数学中的美学方法(珍藏版)》采用历史唯物论观点,阐述了数学美的概念的发展过程、数学美的分类和特征以及数学美的地位与作用,还讨论了数学审美教育等专题。这些题材对培养高水准的数学师资和具有创造才能的数学工作者,乃至广大读者,无疑是富有启发性和指导意义的。相信大家都能从这本读物中获得应有的启示和教益。
《有效教学的理论和模式》的内容由外国篇和中国篇两大部分构成。外国篇主要涉及国外有关有效教学的理论诠释问题,属理论研究。该篇从有效教学的角度,梳理了外国著名教育家的教学论思想。这些教育家,有的是历史人物,有的是当代著名学者,国内的读者大都十分熟悉。但从有效教学的角度透视这些教育家的教学理论,考察他们间的相互关系,也算是一项较有新意的工作。了解这些教育家的有关有效教学的思想,对我们在实际教学中更好地理解教学情境、提高教学效率是十分有益的。
本书按章分类,每章分三部分: 部分是理论,它是离散数学中相应章节的概括,也是解答习题所涉及的课程范围,相当于一个详细的复习提纲。第二部分是选题例解,主要提供了解题方法的分析,希望读者通过选例分析能够举一反三,触类旁通。第三部分是习题与解。我们除解了《离散数学》(上海科学技术文献出版社,1982年)一书的全部习题外,还补充了很多增新知识、开拓思维、加深理解、应用实践的习题,我们的解答虽力图详尽、正确,但决非 标准。希望读者能够独立解答,提出 多精巧的解法。
所有人在日常生活中都会接触到数学问题,多数人却又对之心存畏惧。在这本极为易读又充满趣味的小书中,蒂莫西?高尔斯解释了高等数学与我们在中小学所学的数学知识之间的一些 为根本的、主要是哲学性的区别,让我们能 好地理解那些听起来带有悖论的概念,比如“无限”“弯曲空间”“虚数”等。从基本的观念,到哲学探究,再到与数学共同体相关的一般社会学问题,本书揭开了空间和数的神秘面纱之一角。
本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划模型,层次分析模型,随机模型,动态规划模型,图论模型,最短路模型,网络流模型,数学建模竞赛案例选讲,MATLAB软件使用简介,LINDO软件和LINGO软件使用简介等。
本手册内容包括“微积分学”、“线性代数”和“概率论与数理统计”中一些常用的定义、定理、公式、算法、解法、图、表等。本手册简明实用,内容广泛,查阅方便,便于携带。 本手册可供大中专学校师生及工程技术人员在学习和工作中查阅。
20世纪有影响的数学家集体,产生于20世纪30年代,由法国一批年轻的数学家组成。 本书选编了两篇能集中反映该学派对数学的基本观点的著作:《数学的建筑》和《数学研究者的数学基础》。另外还选了布尔巴基奠基者H·嘉当、韦伊以及狄奥多涅介绍布尔巴基的论文。这些著作和论文,是研究布尔巴基学派的主要原始文献,为我们揭开了布尔巴基的神秘面纱。
家传中医、外科医生、人体解剖学老师、癌症病人、重症肌无力患者……你很难想象这些身份同时集中在一个人身上。传奇的经历写就传奇人生,他通过自己不懈的努力重新获得了健康。 癌症、疑难慢性病如何治疗和康复?《思考文化医学(一位大学老师带癌教书30年的传奇人生)》作者骆降喜通过自身的经历体会,对治疗“绝症”提出了一些新思路、新理念、新方法,倡导文化的医学功能,令人耳目一新。“我的健康我做主!”这不是一句空话大话,这是作者三十余年来与癌症“和平共处”的切身体悟,也是作者二十余年来做公益医疗的深刻感受。在他的帮助下,更多的癌症患者和疑难慢性病患者或得以康复,或得以带病延年。文化的力量,比我们想象的强大。 病从心治,求医的同时,更要自救。
每位数学家都知道布尔巴基的大名,一些人还知道有关布尔巴基来源的一些事,然而只有少数人知道整个故事。1935年,一群法国年轻的数学家决定写作一部分析的基本专著来代替当时的标准作,结果他们写成这部20世纪最重要的、最有影响的数学巨著《数学原理》。 本书作者揭开了这个秘密社团的面纱,向我们表明布尔巴基成员如何通过热烈的辩论,学生式的幽默以及献身精神和艰苦工作,在60年间写出10部著作。本书对布尔巴基的起源,他们的会议,他们的讨论班以及布尔巴基成员本身有许多第一手的论述,书中还有许多重要的照片。