《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于 时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
(第二版)张景中著北京《一线串通的初等数学》从小学生知道的三角形内角和的知识以及三角形面积公式出发,举一反三,推陈出新,直观而严谨地给出正弦的新定义。在此基础上,轻松得到正弦定理、和角公式、勾股定理等一系列三角公式和几何定理,揭示出几何、代数和三角的基本知识之间的密切联系,以三角为主线,构建了初等数学的新体系。《一线串通的初等数学》思想新颖,方法简明犀利,说理严谨,特别着力于从平凡处发掘创新的思路,引导读者发现问题深入思考。《一线串通的初等数学》分为5个部分:正弦和正弦定理;正弦和角公式;余弦和余弦定理;四边形;圆和正多边形。 大体上覆盖了初中应掌握的几何、代数和三角的基本知识。《一线串通的初等数学》每节都安排了例题和习题。
《π的密码:解码数学常数》不但把历史悠久、和人类如影随形的π融入整个数学以至科学之中,而且把人文精神融入其中,对提高人的综合素质,特别是培养人的健康心理大有裨益。 本书适合具有中等及以上文化的青少年或成人阅读,也是研究π的重要参考书。徜徉在π那“依旧”的“涛声”之中,感受阿基米德、祖冲之、贝拉德的魅力,您会流连忘返。 “心会跟π一起走,说好不回头。”——看了这本书,或许您也会成为一个“π迷”。
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中部分选登了历史上的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯·李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;最后一
本书是为大学生写的,包括数学专业的大学生也包括非数学专业的大学生。内容主要包括:数学的推理;基本推理的基础;具有传递的推理;具有传递关系的推理;具有传递关系的运算;现代数学基础;集合论;借助符号表示的推理;中国古代的命题,定义和推理。
本书是一本饶有趣味的数学读物,而不是普通的习题集。全书分为代数、平面几何、立体几何、解析几何和平面三角五章,书中充分应用各种数学知识,打破常规,别出心裁,巧辟捷径,使许多表面上看十分棘手的问题迅速迎刃而解。阅读此书,可以培养读者分析问题和解决问题的能力。《数学趣题巧解》适合中等以上文化程度的读者阅读,同时也是中学数学兴趣小组和数学墙报的有益的参考材料。
《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于巅峰时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《数学符号理解手册》生动地描述了符号们的成长历程,由浅入深地概括了数学公式,呈现了数学结构。不知不觉中,枯燥的数学公式深深地印入你的脑海之中。这一篇篇的小故事幽默地+、-、×是什么时候、在哪儿诞生的?f为什么长成钩子的模样?10g的词源是什么?诞生虚数i的真实理由是什么?大数学家莱布尼兹在哪儿出错了?什么情况下,三角形内角和不是180度?四维空间在哪里?有没有长着四个角的圆?∈-8语言是浪漫的异性相吸?△不是三角形的符号,那么它又是什么形状的符号呢?这一个个疑问在《数学符号理解手册》中能找到答案。
数学教育,不仅困扰孩子,也是很多成年人的噩梦。 如何才能摆脱当下“刷题”“背公式”的教学桎梏,让孩子真正爱上数学?又如何让成年人意识到数学并不是只代表恐惧,而是神奇而美妙的艺术? 作者认为,就像绘画、音乐和诗歌一样,数学是一门艺术,我们的灵感需要被激发;数学又与游戏一样,要基于好奇心去探索。在本书中,作者既替孩子所接受的数学教育感到愤懑,也替数学本身感到惋惜,因此而呼吁教育者反思和尝试改变自己的教学方式,带领孩子能够真正走进数学的世界,领略数学之美。
读完本书,你定会为你上学期间没机会读到这样的数学书而感到懊恼不已!本书作者阿瑟·本杰明是享誉优选的“数学魔术师”,他性地将许多人避之不及的数学与许多人津津乐道的魔术结合在一起,为众多数学恐惧症成.人患者、正在学习数学的学生们开启了一个奇妙美丽的数学魔法世界。本书堪称“12堂极简数学课”,囊括了我们从小学到中学到大学必须掌握的12个很重要的数学概念,比如算术、代数学、几何学、三角学、微积分、圆周率、无穷大等。更重要的是,本杰明既是一名很好的数学教授,更是一位高明的魔术师,他的魔术棒所指之处,会让我们茅塞顿开。他在书中为我们准备了神奇精彩的数学魔术、开脑洞的智力问题,让我们在这趟数学的魔法世界之旅中,从大自然中领略斐波那契数列之美,从小幽默中领会到无穷大的奥秘,从《达·芬奇密码》中窥见
约翰 塞巴斯蒂安 巴赫的音乐、自然界的基本力、魔方、配偶的选择有无共通之处?它们共同的特点是都具有某种对称性。对称性概念为科学和艺术之间、理论物理世界和我们日常生活的世界之间架起了桥梁。然而关于对称的 语言 数学中的群论 却产生于最意想不到的来源:一种无法解出的方程式。几千年来,在遇到现在所说的五次方程之前,数学家已经逐渐解决了越来越困难的代数方程。但几个世纪过去了,五次方程仍然没有解,最后,两个数学天才彼此独立地发现了它不能用通常的方法解出,群论由此产生。这两个年轻的天才是挪威数学家尼尔斯 亨里克 阿贝尔和法国数学家埃瓦利斯特 伽罗瓦,他们最后都悲剧性地死去。事实上,伽罗瓦(时年20岁)在他致命的决斗前夕,草草地记录了他的证明的另一份简要总结,笔记本的边上有一句话: 我没有时间 。
《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于 时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类 完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年 印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。