本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
克莱因(Felix Klein,1849 1925)是19世纪末、20世纪初世界数学中心 德国哥廷根学派的领袖,并且热衷于数学教育的改革。本书是具有世界影响的数学教育经典,全书共分3册:册,算术、代数、分析;第二册,几何;第三册,精确数学与近似数学。本次影印前两册的英译本,译者为赫德里克(Earle Raymond Hedrick,1876 1943)和诺布尔(Charles Albert Noble,1867 1962),册用美国Dover图书公司的1945年版,第二册用Dover的1939年版,并将两册合刊。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
谢彦麟编著的《代数方程的根式解及伽罗瓦理论》是一位大学分析学教授在学习伽罗瓦理论时的心得体会,本书以还原历史的视角,以一元方程的求根公式讲起,配以大量简单例子帮助初学者通过自学掌握伽罗瓦理论这一抽象代数中的经典内容。 《代数方程的根式解及伽罗瓦理论》适合大学、中学师生及数学爱好者阅读。
本书为广大考生量身定做.作者匠心独运,在故事的框架下梳理着高中数学知识,剖析了280道题 涵盖高考的内容和题型,在题意挖掘、结构分析、背景揭示、思路形成、方法提炼、学生易错点预警、心理调节、思想总结等方面都有精辟生动的阐述.本书还探讨了高考命题动向、建立学科兴趣、培养意志 品质、增强自控力、生涯规划、中学生“早恋”等热点问题,引人入胜,润物无声.作者为全国名校深圳中学 的高三“钉子户”老师,同时又是一位小说家,功底扎实,文采斐然.深入而浅出,专业与创新,注定了本书 的和风行 本书适用于高中生及高中教师阅读参考.
20世纪刚刚过去。百年来的世界数学,恰如高山巍峨,大海浩瀚。本书想通过数学历史上的人和事,勾勒一幅当代数学的剪影。 数学是世纪政治风云变幻的缩影。本书记载了希特勒上台怎样葬送了伟大的格丁根数学学派;数学家如何有效地投身反法西斯战争;冷战时期的超级大国同时也是世界数坛霸主。数学又是一种文化现象。布尔巴基数学学派终于由盛渐衰。诺贝尔奖获得者中却不断出现数学家。波兰、匈牙利这样的小国数学人才辈出,美国普林斯顿一步登上世界数学顶峰,东方的日本、印度、中国的数学正在迎头赶上。 数学的发展不是孤立的,计算机是数学家冯·诺伊曼的杰作:图灵用数学方法破译德军的密码:数学家占据了诺贝尔经济学奖的半壁江山。数学控制论、数学信息论、数学规划论的创始人都是数学家。 本书除了介绍以上的纵向历史。也报
Camassa-Holm方程是一类十分重要而又特别的新型浅水波方程,有广泛的应用背景。该类方程存在一类尖峰孤立子,并且它是完全可积的,具有双哈密顿结构和Lax对。本书给出该类方程的物理背景并阐述它的完全可积性。对该类方程的行波解作分类,获得多种奇异孤立波解;给出该类方程的谱图理论和散射数据;利用反散射方法,给出该类方程的多孤立子解。获得该类方程的整体强解的存在性及整体弱解的存在性;得到该类方程柯西问题的局部适定性;研究它们的blow-up问题以及尖峰孤立子解的轨道稳定性。本书同时研究含尖峰孤立子的Degasperis-Procesi方程及b族方程,研究前一类方程激波的形成及动力学分析,给出b族方程的水波结构和非线性平衡关系,对Degasperis-Procesi方程的适定性给出具体证明。 本书适合数学、物理和力学专业的研究生、教师及相关领域的科研工作者
《G-V模糊拟阵》以图论、拟阵、模糊集为基础. 主要介绍模糊基与模糊圈的性质、判定和算法, 模糊集的秩的性质和算法, 模糊闭集、对偶、超平面的性质 和公理系统, 模糊拟阵的结构, 模糊图拟阵等, 最后介绍模糊拟阵的一种推广―― G-V 直觉模糊拟阵.
《数学大辞典》是一部综合性的数学大辞典,涵盖数理逻辑与数学基础、数论、代数学、分析学、复分析、常微分方程、动力系统、偏微分方程、泛函分析、组合数学、图论、几何学、拓扑学、微分几何、概率论、数理统计、计算数学、控制论、信息论、运筹学等学科,以常用、基础和重要的名词术语为基本内容,提供简短扼要的定义或概念解释,并有适度展开。正文后附有数学发展历史纪要、人名译名对照表等附录,并设有便于检索的中、英文索引。 《数学大辞典》可供数学及相关专业的科技工作者,大专院校师生,中学数学教师,数学爱好者,以及具有大专以上文化程度的其他读者参考使用。
《548个来自美苏的数学好问题》收集了原苏联著名数学家A-M.雅格龙教授和N-M.雅格龙教授收集的169个经典数学问题以及《美国数学月刊》中刊载的379个经典数学问题.《548个来自美苏的数学好问题》中不少问题曾经直接被用作数学竞赛的试题,是各级各类竞赛命题的好素材, 《548个来自美苏的数学好问题》可作为数学竞赛选手、数学竞赛教练员及广大数学爱好者的参考用书. 内页插图
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是最基础的,并非于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要最终掌握超限归纳并且理解它为何总被Zorn引理替代的数学家。 《集合论基础》介绍了“朴素”(非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方法,内
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。 量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域尖端知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特
《古今数学思想》(第2册)论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。 《古今数学思想》(第2册)的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。
为什么在星期五购买彩票比较好?为什么淋浴总是太热或太冷?哪一个古典谜题在战争中被盟军轰炸破坏了?这些问题和其他许多问题在罗勃·伊斯特威、杰里米·温德姆编著的《三车同到之谜——隐藏在日常生活中的数学》这本有趣而且内容丰富的书中得到了解答。 《三车同到之谜——隐藏在日常生活中的数学》这本书,对于任何希望提醒自己——或初次发现——数学几乎与我们所做的每一件事有关的人,都是有用的。约会、烹调、驾车出游、赌博和救生技术,无不联系着有趣的数学问题,对于这些问题,你将在本书中获得解释。 你将发现战时做吐司的节能技术,奇特的7月4日巧合,澳大利亚兔的指数生长,和在雨中奔跑而不淋湿的惊人公式。 无论你拥有天体物理学学位,或者离开学校后从未接触过数学问题,这本书将改变你观察周围世界的方式。