全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
地表水特别是集中式饮用水源地水质监测是环境监测系统工作的重点。本实用监测方法立足高效、实用的原则,借鉴外的相关监测方法。综合监测一线同仁的实践经验编辑而成。书中包含地表水常规项目24项、补充项目5项、集中式饮用水源地特定项目80项的现行实用的分析方法。《地表水环境质量监测实用分析方法》可供各级环境监测部门、从事地表水环境监测工作人员使用。
《几何原本》共有十三卷,其中卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;最后讲述立体几何的内容。从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了
本书是关于一般拓扑的一部经典著作.书中系统地介绍了一般拓扑的基本知识.正文共分七章,包括拓扑空间、Moore-Smith收敛、乘积空间和商空间、嵌入和度量化、紧空间、一致空间、函数空间.此外,还有一章预备知识和一个附录.每章之后有大量问题,作为正文的补充和延伸,有助于读者更好地理解正文的内容.书末由译者加写了一个附录,介绍了早期不分明拓扑学发展的概貌. 本书正文七章由吴从忻翻译,其余由吴让泉翻译.增添的附录由吴从忻撰写. 本书可供高等院校数学系师生及有关的专业工作者参考.
内容简介众所周知,函数思想与不等式方法贯穿整个数学世界,且不等式是人们最喜爱、最欣赏的数学内容,进而兴起了不等式研究的热潮从知识内容上讲,不等式又划分为代数不等式三角不等式、几何不等式.为了让几何不等式结构更丰满、内容更丰富,使得其图文并茂、美不胜收,为了让几何不等式更具实用性、优美性、趣味性、欣赏性、收藏性,为了让几何不等式的光辉照亮人间,让几何不等式的花朵开满人间,芳香飘满人间,故作者怀着激动的心情写了此书.本书适合高等院校师生及数学爱好者研读.