几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及、省级骨干教师培训班参考使用。
Credlts for Figures and Color Plates Much has changed in the world of fractals, computer graphics and modem mathematics since the first edition of Fractals Everywhere appeared. The company Iterated Systems, Inc., founded by Michael Barnsley and Alan Sloan, is now competing in the image compression field with both hardware and software products that use fractal geometry to compress images. Indeed, there is now a plethora of texts on subjects like fractals and chaos, and these terms are rapidly becoming "household words.
《航空基础技术丛书:航空材料技术》共分9章,从航空材料概论开始,分别介绍了高温结构材料技术、铝合金材料技术、钛合金材料技术、超高强度结构钢技术、透明材料与透明件制造技术、高温防护涂层材料技术、橡胶密封材料技术和先进航空材料检测技术等专业的基本情况及其发展。
原著被列于“莱顿汉学”(SINICALEIDENSIA)丛书之一。在科学翻译史上,汉译《几何原本》(1607年)是一项杰出的成就。利玛窦与徐光启筚路蓝缕,以古文风韵、迻译拉丁原典,风格传神,令人心悦诚服,梁启超曾赞其为“字字金珠美玉”。《几何原本》的翻译也是历史上欧洲与中国文化冲撞的一个侧面,故其价值不于数学史或科学史,在近代中西文化交流史上亦具重要价值。安国风博士的《欧几里得在中国:汉译〈几何原本〉的源流与影响》,着力把握晚明社会学术思潮变化的大背景,突出《几何原本》作为“异质”文化(如抽象性、演绎性和公理化)的特点,详细探讨了欧氏几何向中国传播的前因后果;同时,通过古典文献的梳理引证、相关人物、著作的评述与分析,揭示了明清之际中国传统数学思想的嬗变历程。
《不完备性:哥德尔的证明和悖论》是对哥德尔的生活、工作及其世界的重要新礼赞。20世纪早期见证了经典物理和数学的基础假设遭受的几次打击。相对论颠覆了约定俗成的时空观念,量子世界的研究挑战因果效应的基本观念。最为惊人的是,对于科学的基础数学,不完备性定理揭示了将数学理性化的尝试中都藏有不可弥合的裂痕,这个结果简直是悖论式的。藏在这个发现背后的天才就是哥德尔,他自身就是一个悖论式的人物。他是自亚里士多德以来最伟大的逻辑学家,同时还是爱因斯坦晚年最亲密的思想伙伴。但他行事又极为古怪,惯于偏执狂推理,并最终因此悲剧性地死去。他深受失去理性的困扰,仍然对理性深具信心。通过天才的证明。他得以揭示在任何足够复杂的中简单地说,任何数学家想要使用的都存在不能被证明的真命题。一些思想家对此感、到绝
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、学生,初、数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座及、省级骨干教师培训班参考使用。
《分形几何与流体》是瞿波在英国龙比亚大学攻读博士的学位论文的核心成果,深入浅出地介绍了分形及其在流体中的应用,详细论述了如何用分形中的分数布朗运动模拟流水中污染物的轨迹,包括对海湾和海洋中污染物传播轨迹的模拟。是一本实用性强、浅显易懂的应用数学学习和研究的参考用书。
曼克勒斯编著的《初等微分拓扑学》讲述微分拓扑学、特别是它的几何方面的基本内容,不涉及代数拓扑的结果与方法,全书共分两章,章微分流形,讲述了有关微分流形的一些经常用而不证的基本事实的证明;第二章微分流形的剖分,讲述光滑部分的存在性和唯一性,书中在每一个基本概念或定理之后都有习题和问题,便于读者思考。《初等微分拓扑学》可供高等学校数学系拓扑专业作为教学参考书。