本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
本书介绍了多元统计分析的方法和理论,以及R语言计算,涵盖了经典多元统计分析的全部内容,包括:矩阵运算知识、数据可视化与R语言、多元正态分布、多元正态总体的抽样分布、多元正态分布的参数估计、置信域和假设检验、线性回归模型、多元多重回归分析、主成分分析、因子分析、判别分析、聚类分析和典型相关分析等内容,以及R语言的应用。本书除了重点介绍各种多元统计分析的思想、方法和理论外,使用R语言进行计算和数据可视化也是本书的特色,对书中所有的多元统计分析方法和理论都给出了R语言程序和应用,有大量翔实的应用案例可供参考,并配有相当数量的习题可供练习。 本书取材新颖、内容丰富、阐述严谨、推导详尽、重点突出、思路清晰、深入浅出、富有启发性,便于教学与自学。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本书是与毕燕丽主编的《高等数学》教材配套的高等数学课程学习指导书。 本书意在指导学生如何学习高等数学;怎样理解知识点,解惑答疑;总结归纳解题方法。适当增加练习题量,以补充教材题量小的缺憾,促使学生通过做题掌握解题方法,提高对《高等数学》教材的学习水平,也可以满足想继续深造(专升本、自考)学生复习的需要。 本书内容包括:函数与极限、导数与微分、导数的应用、不定积分、定积分、定积分的应用举例、常微分方程、多元函数微分学、二重积分、级数、拉普拉斯变换、矩阵及其应用、概率论初步、练习题参考答案。
本书是结合培养应用型人才掌握高等数学知识而与同济大学《高等数学》第六版相配套的学习指导与同步练习,旨在帮助高等工科院校学生学习掌握和运用的高等数学知识,提高学生分析问题和解决问题的能力,同时经过足够的训练更好地掌握教材内容,本书内容与教材相呼应,是对教材内容的一种补充和深化,其章节划分也与教材相同,每节内容结构上由五部分组成,即知识结构、主要内容、重难点解析、典型例题、同步训练,其中,知识结构以图表的形式清晰地展示出本节的知识点之间的关联;主要内容是对本节所涉及的基本概念、重要定理及性质进行系统的总结;重难点解析是指出重要定义和定理的理解应用所要注意的方面;典型例题精选了一些常见的题目并给出了详细的解答;同步训练中给出了一些不同难度、不同风格的习题供学生训练使用,另外在
本书作为高职教育的知识载体,在深化教育教学改革、全面推进素质教育、培养创新人才中有着举足轻重的地位。高等数学是高职院校各专业重要的基础课程之一,随着高职教育的蓬勃发展和教学改革的不断深入,为了适应高等职业教育培养高技能人才的需要,更好地贯彻*等七部门《关于进一步加强职业教育工作的若干意见》的有关精神,在认真总结兄弟高职院校高等 数学课程的教学改革经验以及我院教师的教学经验的基础上,我们组织编写了教材《高等数学》,本书力求充分考虑高职教育的特点与要求,使其既满足高职各类专业需要,又适合高职学生的不同知识需求。 在本书的编写过程中我们遵循以下原则: 1.注重以实例引入概念,并终回到数学应用的思想,加强学生对数学的应用意识和兴趣,培养学生用数学思想消化吸收专业知识的能力。注意与实际
《华职教育·2014年全国高等教育自学考试创新型同步辅导系列:高等数学(工本)同步辅导·同步训练》是紧扣全国高等教育自学考试《高等数学(工本)》*考试大纲及自考委指定教材,系统研究历年考试真题,并在结合多年教辅经验的基础上编写而成的,希望能够对广大学员有所帮助。 书正文每章节均分为五部分:教材知识架构、本章考纲解读、考点考频分析、重难点知识串讲(含真题链接)、知识强化训练(含参考答案及解析)。下面将逐一进行介绍。
本书分练习题、答案或提示两部分,练习题内容涉及一元函数微积分学、空间解析几何、微分方程、多元函数微积分学、无穷级数,题型分为计算、证明及应用题(A类)、选择题(B类)、填空题(C类)三大类,共有1716道练习题。 根据这些年的教学实践和广大师生对本《练习题集》提出的希望与要求,我们对《练习题集》进行了一些修改,作为修订版予以再次出版。 在这次修订中,练习题的题型没有变化,主要是补充和修改了些习题,对初版编写和排印中的疏漏之处,进行了校正,并再次审核了全部习题答案。 修订后,A类题1100道,B类题300道,C类题350道,共计1750道练习题。
《高等数学》是以国家*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收多年来教学实践和教学改革成果而编写的。 本教材分上、下两册。上册内容包括一元函数、极限与连续、一元函数微分学及其应用、一元函数积分学及其应用、常微分方程。下册内容包括向量代数、空间解析几何、多元函数及其微分法、重积分、曲线积分与曲面积分、无穷级数等。 本教材内容全面、结构严谨、推理严密、详略得当,例题丰富,可读性、应用性强,习题足量,难易适度,简化证明,注重数学知识的应用性,可作为普通高等院校“高等数学”课程的教材,也可供工程技术人员或参加国家自学考试及学历文凭考试的读者作为自学用书或参考书。
郑州轻工业学院数学与信息科学系编写的《高等数学学习指导与同步训练教程(第2版配同济第6版上下册)》为同济大学数学系编写的《高等数学》第六版的配套辅导教材,共分12章,章节的划分与第六版完全一致。每章内容由六部分组成:基本概念、性质与结论;典型例题分析;疑难问题解答;同步训练;自测题;同步训练及自测题参考答案与提示。书末附有2010-2011年全国硕士研究生入学统一考试数学试题及答案。 《高等数学学习指导与同步训练教程(第2版配同济第6版上下册)》可作为高等工科院校高等数学学习的辅导读物,也可作为教师教学的参考书,同时也是一本同步指导与训练教程,而且也可作为学生考研的系统复习用书。
本书以大学高等代数的学习内容为依据,以*研究生考试大纲为依据安排章节。每章按题型分类,每个题型中包含题型特点及解题指导。为方便不同学习阶段的读者使用本书,编写过程中每章内容分为两部分:*部分为基本题型,作为在校生学习以上课程时的同步学习指导使用,其特点为所选均为基本题目;第二部分为综合提高题型,一方面可供读者在本课程结束时复习、总结使用,另一方面为备考硕士研究生入学考试的读者提供复习的工具。为加深读者学习的印象、提高学习效果,题中除包括解题过程外,还有思路探索、方法点击,进一步对题目进行分析、总结。
本书是与全国使用多的*版高等数学教材《高等数学(下册)》(第五版,同济大学应用数学系主编,高等教育出2002年7月出版)配套的教学参考书。本书既可作为高校师生教、学《高等数学(下册)》的参考书,也可作为习作课的教材,还可作为期中、期末备考及“考研”、“竞赛”的复习辅导书。 为了便于读者自学,本书编排体系基本上与主教材的章、节顺序一致(详见目录),原则上以节为单位编写,对内容少或容易学习的节适当合并为“讲”。全书含各章习作课、期末复习课共36讲,每讲2(或4)学时,共需80至90学时教完,余下的机动学时,可讲打“*”号的节或作为测试时间和加强习作课。各节(讲)包括主要公式、答疑辅导、考题(考研题和竞赛题)解析(解与分析)、教与学建议、补充与说明及习题提示等栏目;各章末都安排了一次习作课’含内容
本书根据国家示范性高职院校建筑类专业的教学要求编写而成,体现了“必需、够用为度”的原则,内容包括三角函数、一元函数微积分、矩阵和线性方程组以及概率统计初步。 本书可供三年制高职高专建筑类专业使用,也可供其他专业选用。
本书是学习高等数学课程的一本很好的辅导书。本书与同济大学《高等数学》第六版同步,下册内容包括空间解析几何与向量代数、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数。本书的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习本书,将完全掌握高等数学的思想与方法。本书还附有历年研究生入学考试题的分析解答,对读者考研复习与把握考研方向非常有益。欢迎读者选用本书与本系列丛书。