全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本书是为成人高等教育而编写的一本高等数学(微积分)教科书,内容包括:一元函数微积分、多元函数微积分、概率论简介。 高等数学(微积分)是高等教育财经类各专业的一门必修的公共基础课。通过本课程的学习,一方面,能使学生系统地获得必要的微积分基本知识及常用的数学方法;另一方面,通过各个教学环节,逐步培养学生具有比较熟练的基本运算能力和自学能力、初步抽象概括问题的能力以及一定的逻辑推理能力、用定性与定量相结合的方法处理经济问题的初步能力。为学生学习后续课程和进一步获得经济管理技术知识奠定必要的数学基础。 为了符合成人教育的实际要求,贯彻“少而精”的原则,做到突出重点、详略得当、通俗易懂,在本书的编写过程中,我们做了以下一些尝试: (1)努力突出微积分的基本思想和基本方法。本书
本书是理工科学生学习高等数学、备考以及教师教学的参考书,每章的“内容提要”系统简明,“习题选解”清晰典型,“是非题题解”引人深钻教材,“综合题题解”呈现研考水平。 本书分上、下两册出版,上册内容有:函与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分应用、空间解析几佫与向量代数。
本书是与天津大学出版社出版、由相同作者主编的《高等数学》(上册)配套的辅导教材。内容包括函数、极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、向量代数与空间解析几何等7章的全部习题的解答过程及答案。每一章后都另配有复习题及自我测试题。复习题随题给出了解答过程及答案;自我测试题的解答过程及答案在书末统一给出。 本书不仅适合全日制普通高等学校本科生使用,而且适合网络高等教育、函授教育、高等职业技术教育及成人高等教育的本科生使用,也适合自学。
本版《高等数学》上下册系高等工业院校的本科高等数学少学时使用的教材,是在天津大学历年高等数学版本的基础上,重新组织编写的。全书参照高等工业学校《高等数学课程教学基本要求》,结合教学实际,并参考了报考硕士研究生数学入学考试(数学二)内容的要求(本书涉及的内容超出了数学二的要求)而编写的。 该书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分和微分方程等7章;下册包括矢量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分和级数等5章。
本书由两大部分组成:即理论部分与实验部分。在“理论部分”(第1章,实验的理论背景)我们首先简短地介绍实验研究所依据的特征性和功能性认知结构差异理论;紧接着与实验认知心理学的相关理论作对比分析;然后依据特征性与功能性认知结构的理论,分析两种实验研究(算法实验与物理实验)的内涵。 “实验部分”的论述以1700多页的数据分析报告为基础,这些分析报告都以德国奥斯纳布吕克数学教育研究所(FMD)的工作报告形式公开发表(Xu,1990,1992a-n)。在这个部分我们首先描述算法实验与物理实验的组织与实施进程(见第2章),然后从三个方面分析整个主实验。一是刻画被试用三种不同的表征工具,构建算法以及分析算法过程中表现的行为方式(见第3章);二是利用两个案例详细地分析学生对数学思想的建构过程(见第4章);三是介绍物理实
本版《高等数学》上、下册系高等工业院校本科高等数学课程使用的教材。该书是在天津大学出版社历次《高等数学》版本的基础上,由天津大学高等数学教研室组织编写的。 在全书编写过程中,编者根据高等工业学校《高等数学课程教学基本要求》,结合教学实际,并充分参考报考硕士研究生数学入学考试(数学一)的内容要求。 本书上册包括函数、极限、导数与微分、微分中什定理及导数的应用、不定积分、定积分和空间解析几何与矢量代数等7章;下册包括多元函数微分学、重积分、曲线积分及曲面积分、级数和微分方程等5章。各章节后附有适量习题,书后附有习题参考答案。
本书是高职高专院校工科类与经济类数学教学辅导用书,适应于我国高等职业教育。为了适应高等职业教育的教学改革和发展,满足高等教育高等数学课堂上“教、学、做”一体化的
本书是与全国使用多的*版高等数学教材《高等数学(下册)》(第五版,同济大学应用数学系主编,高等教育出2002年7月出版)配套的教学参考书。本书既可作为高校师生教、学《高等数学(下册)》的参考书,也可作为习作课的教材,还可作为期中、期末备考及“考研”、“竞赛”的复习辅导书。 为了便于读者自学,本书编排体系基本上与主教材的章、节顺序一致(详见目录),原则上以节为单位编写,对内容少或容易学习的节适当合并为“讲”。全书含各章习作课、期末复习课共36讲,每讲2(或4)学时,共需80至90学时教完,余下的机动学时,可讲打“*”号的节或作为测试时间和加强习作课。各节(讲)包括主要公式、答疑辅导、考题(考研题和竞赛题)解析(解与分析)、教与学建议、补充与说明及习题提示等栏目;各章末都安排了一次习作课’含内容
本书分上、下两册出版,上册6章,内容为函数与极限,一元函数微积分,微分方程;下册4章,内容为向量代数与空问解析几何,多元函数微积分,无穷级数,本书按照适当降低理论深度,突出微积分中实用的分析和运算方法,着重基本技能的训练而不过分追求技巧的原则,对第二版作了修订,内容上作了一些增删;结构上作了适当调整;删去了某些要求过高的习题,增加了突出基本训练的题目,增加丫便于阶段复习的章复习题。使之更适应本书的使用要求,本书可作为本科少学时专业和专科的高等数学教材或参考书。
本书分练习题、答案或提示两部分,练习题内容涉及一元函数微积分学、空间解析几何、微分方程、多元函数微积分学、无穷级数,题型分为计算、证明及应用题(A类)、选择题(B类)、填空题(C类)三大类,共有1716道练习题。 根据这些年的教学实践和广大师生对本《练习题集》提出的希望与要求,我们对《练习题集》进行了一些修改,作为修订版予以再次出版。 在这次修订中,练习题的题型没有变化,主要是补充和修改了些习题,对初版编写和排印中的疏漏之处,进行了校正,并再次审核了全部习题答案。 修订后,A类题1100道,B类题300道,C类题350道,共计1750道练习题。
本书共包括: 多元函数微分法及其应用 重积分 曲线积分与曲面积分 无穷级数 微分方程
本书是参照全国大学专科理工类教学大纲并考虑到高等职业教育的特点编写的。全书分上、下两册,共12章。上册内容为:函数、极限与连续,导数与微分,中值定理与导数应用,不定积分、定积分及定积分应用。 本书每节后配有一定数量的习题,每章后配有练习题及练习题、习题的解答和提示。 本书可作为大学专科、高等职业教育专科及高等函授大学、夜大学、职工大学、高等教育自学考试专科生的教材,也可供工程技术人员自学使用。
本书是与同济大学《高等数学》第五版相配套的同步练习册,分为上下册。内容包括:一元函数微分学、一元函数积分学以及空间解析几何与向量代数;多元函数微分学、重积分、曲线积分和曲面积分、无穷级数和微分方程。 本书特点: 1 本书以同济大学《高等数学》第五版的章节为顺序,针对书上每一个知识点,我们在每一节中配备了一定量的基本练习题和提高题,每一章后配备一套测验题。在上、下册的后还各配备了两套模拟期终考试题。旨在帮助同学们迅速而全面地掌握《高等数学》的内容。 2 本书的形式为学生的作业本,一方面由于比较规范,便于任课教师批改;另一方面,减轻了学生抄作业题的负担,同时也便于作业本的保留。 3 本书不配备相应的答案或解答。旨在培养学生的独立思考能力和解决问题的能力。 本书是长期从事工
本书配套同济大学应用数学系主编《高等数学》第五版同步辅导,可作为高等学校工科、理科各专业本科高等数学课程的同步辅导教材或复习参考书,也可作为准备报考硕士研究生同学的复习参考书。高等数学是高等学校工科各专业重要的基础理论课之一,通过本课程的教学,应使学生理解高等数学的基本概念,掌握基本理论和方法,提高抽象思维、逻辑推理、运算技能、综合运用等方面的能力。本书精选了近几年来不同题型的考研真题,并从多侧面、不同角度用多种解法进行讲解,在后给出了一些综合训练题,选取了一些综合性的题目,大部分都涉及多个知识点,加深学生对所学知识的综合运用能力的锻炼。本书集合了编者数十年的教学实践经验。初稿曾多次在工科专业的学生中结合教学使用,受到学生的欢迎,对提高教学质量,培养学生能力,起到了非常显著
本书是学习高等数学课程的优秀辅导书,分上、下两册,主要内容与同济大学《高等数学》第五版同步,下册内容包括多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、微分方程等,并增添了关于经济数学方面的部分内容,按章节编排。每节分为主要内容,疑难解析,方法、技巧与典型例题分析和考研试题典型分析四个部分,对高等数学的理论与概念作了凝炼与归纳,对学习中可能出现的问题作了分析与解答,对习题与例题作了演示与剖析,对解题方法与技巧作了评点与指导,并对考研数学试题进行了演练与解答,在高等数学方面力图为读者自学、提高、考研指明方向和途径,提供方法与技巧。
本书是根据*全国高等职业教育《应用数学基础》基本要求和当前高职高专数学教学实际,并结合多年教学实践而编写的,本书的特点是简明扼要、深入浅出、便于学生学习;重视应用,联系实际;习题分为A( 基础题)、B(提高题)、C(应用题、探究题),便于分层教学。内容包括线性代数初步、线性规划、概率、应用统计。 本书系高职高专精品课程规划教材高等数学系列教材之一,本系列教材包括《高等数学(基础分册)》、《高等数学(工程分册)》、《高等数学( 经管分册)》、《数学建模》等四本。 本书可作为两年制或三年制高职高专各专业高等数学课程教材。
该书按每章的知识结构、教学要求、学法指导、典型例题分析、同步练习、自测题等六个部分编排,根据五年制高等职业教育数学课程的教学目标及学生的实际。本书的立足点是夯实基础,增强同步性,指导学生有效地独立获取知识,逐步培养学生的自学能力与应用能力,力求做到根据各章内容的不同特点简明扼要地说明知识要点、思想方法及注意点,精选例题,始终体现基础性。
时光如白驹过隙,转瞬四载春秋已逝。回首大学生活,令我感到自豪的是我的数学成绩一直名列前茅。在今年的硕士研究生入学考试中,我数学考得很不错,145分(总分150分)。这或许是一种幸运,但我更相信是自己找到了合适的学习方法。很多考生朋友“怂恿”我将经验介绍给大家,加之编辑老师的鼓励,我就以濮人献玉的心态将复习时的一些做法和想法行之成文,与大家共同探讨。 我认为对知识点的掌握要有三个层次,个层次是理解与运用,要理解与知识点相关的公式定理的内涵与外延,并且在做题时能灵活运用。第二个层次是融汇贯通,要在阶段的基础上熟记与知识点相关的公式定理,做模拟题及真题时结合各部分的知识点,把知识点间建立起横向和纵向的联系。第三个层次是触类旁通,通过背诵,一看到试题即可反映出相应的公式定理。
网络版高等数学(版)教材的使用已有5个年头了,为进一步提高教材的质量,更好地适应继续教育及网络教育发展的需要,我们广泛听取了任课教师的意见和建议,参照“教学基本要求”修订编写了网络版高等数学(第二版)。这次参加编写的有黄珏、许新福、张华隆、任学敏。 我们对原书在结构上作了适当的调整,且篇幅有所压缩;保留了习题册与教材分开便于交批的特点;适当降低了理论深度,突出了实用的分析和运算方法;删除了某些要求过高的习题,突出了基本训练的题目,使之更适应使用要求。 本书分为上、下两册出版,上册共六章,内容为函数与极限,一元函数微分学,一元函数积分学,微分方程;下册共五章,内容为向量代数与空间解析几何,多元函数微分学,多元函数积分学,无穷级数。 为本书单独编制的习题册分为上、下两册,
本版《高等数学》上下册系高等工业院校的本科高等数学少学时使用的教材,是在天津大学历年高等数学版本的基础上,重新组织编写的。全书参照高等工业学校《高等数学课程教学基本要求》,结合教学实际,并参考了报考硕士研究生数学入学考试(数学二)内容的要求(本书涉及的内容超出了数学二的要求)而编写的。 该书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分和微分方程等7章;下册包括矢量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分和级数等5章。
为深化教育教学改革,培养应用型和创新型人才,适应高职教育大众化的发展趋势,内、蒙古大学出版社组织了内蒙古自治区部分高职院校的一线专家学者,依据《高职高专高等数学课程教学基本要求》,针对数学课程少学时改革情况编写了《高等数学》,该教材的编写本着“适度、够用”的原则,立足于体现高职高专教学改革的指导方针,力求做到结合专业的特点,强化技能培养。 教材充分考虑了高职学生的数学基础,淡化逻辑论证;避免怪题和难度较大题型的解析;例题与习题尽量贴近专业;为便于学生巩固所学知识、提高基本技能,教材配备了较多的课后练习题,每章后配有自测题,为不同层次的学生提供更多的选择空间。 本教材适用于高职院校工科专业少学时的数学教学,约用84学时。