本书是一本调和分析的入门书。全书分为三部分,首先,给出了直线R上的Fourier分析理论,包括Fourier级数和Fourier变换;接着,将1R上的Fourier分析思想推广到局部紧Abel群(LCA群)上;最后,介绍了非交换群上调和分析技巧,特另抛,以Heisenberg群为例描述了非紧非交换群上的Fourier分析理论。每章后都配备了一定数量的习题,可作为本书内容的补充或延伸。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
《数学分析教程》版在南京大学数学系连续 使用了近二十 年。本书第二版我们对全书作了详细修订。全书概念 准确,论证严 谨,文字浅显易懂,便于自学。丰富多彩的例题与多 层次的习题大 大加强了传统的分析技巧的训练,同时又注意适当引 进近代分析 的概念。本书可作为综合性大学、师范院校数学系各 专业的教材, 也可作为其他对数学要求较高的专业的教材或教学参 考书,还可 作为高等学校数学教师以及其他数学工作者参考用书 以及研究生 入学考试的复习用书。 全书分上下两册出版。上册共9章,包括极限理 论、一元函数 微积分、多元函数及其微分学。下册共10章,包括级 数理论、傅里 叶级数、反常积分与含参变量积分、线积分、面积分 与重积分、囿变 函数与RS积分、场论等。本书是下册部分,名为《数 学分析教程(下)》,由宋国柱、任福
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
《工科数学分析教程(上册)}是一本信息化研究型教材本书包括数列极限、函数极限与连续、导数的计算与应用、泰勒公式、不定积分、定积分的应用、广义积分、数项级数.本书体系内容由浅入深,符舍学生认知规律.每章都有提高课,内容包括混沌现象与极限、连续函数不动点定理以及应用、极值问题与数学建模、泰勒公式与科学计算、积分算子的磨光性质以及应用等系列内容,初步为学生打开现代数学的窗口.同时每章都设置了系列探索类问题,包括理论问题、应用问题,培养学生应用数学解决实际问题的能力.本教材有与之配套的MOOC 课程,充分利用多媒体信息技术,将复杂数学问题直观化,图文并茂视频课为读者营造一对一的视频授课环境,通过扫描教材中的二维码进入视频课的学习,使得学生对数学问题的理解更通透.
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两??世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书都是适合的。 特别是费定晖、周学圣版本题解,历经三十年风雨,三次改
本书是“高等教育百门精品课程教材建设计划”(此计划作为整体已列入新闻出版总署“十五”国家重点图书规划)研究成果之一,是与西安交通大学马知恩和王绵森教授主编的普通高等教育“十五”*规划教材《工科数学分析基础》(第二版)(上册)相配套的教学辅导书。 本书每章内容分为三个部分:主要内容剖析;教学要求、典型例题与讨论题;习题选解。本书可作为工科学生学习高等数学课程的学习辅导书,并兼顾任课教师的教学需要,同时也可供其他非数学类专业的学生和教师参考。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两??世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书都是适合的。 特别是费定晖、周学圣版本题解,历经三十年风雨,三次改
本书是在第一版基础上修订而成的,在保持了第一版的简明扼要、论述清晰的内容体系和风格基础上,大幅度增加了泛函分析在各个领域中应用的例子. 全书共 4 章,包括泛函分析基础、局部凸空间、算子理论与算子代数初步、Banach 空间的微分学与拓扑度. 书中列举了大量泛函分析在复 分析、优化理论、偏微分方程、最优控制等领域的应用实例. 本书尽力以 一个适当的基础知识为起点,在整体内容上留给教师授课更多的自主空间, 留给学生学习更多的思考空间. 书中每章都给出了相应的参考书目供读者阅读,并精心选配了大量习题作为练习和正文的补充.
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calder n-Zygmund奇异积分算子的旋转方法。为体现调和分析与偏微分方程研究的紧密联系,还详细介绍了线性常系数偏微分方程的局部可解性与正则性、数学物理中的基本算子的基本解、非线性Schr dinger方程的散射理论、导数 Schr dinger方程的低正则性等应用。 本书是作者多年来培养研究生的内部讲义,特点是简洁而直奔主题,适合作为研究生的分析教材或年轻数学科研人员自学用书。
本书是“高等教育百门精品课程教材建设计划”(此计划作为整体已列入新闻出版总署“十五”国家重点图书规划)研究成果之一,是与西安交通大学马知恩和王绵森教授主编的普通高等教育“十五”*规划教材《工科数学分析基础》(第二版)(下册)相配套的教学辅导书。 本书每章内容分为三个部分:主要内容剖析;教学要求、典型例题与讨论题;习题选解。本书可作为工科学生学习高等数学课程的学习辅导书,并兼顾任课教师的教学需要,同时也可供其他非数学类专业的学生和教师参考。
本书是* 国家理科基地创建名牌课程项目 的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。 本书以编著者们多年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取上致力于对传统内容的更新、补充与层次化。本次修订对第1版的基本框架(指章、节和小节)和主要内容(指命题、例题、练习题和参考题)基本上不做改动,但对书中一些证明、解法和注释等做了多处改进;增加了练习题和参考题的层次性;对部分较难的参考题的提示进行了改进。 本书分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 本书可作为高等院
本书是“高等教育百门精品课程教材建设计划”(此计划作为整体已列入新闻出版总署“十五”国家重点图书规划)研究成果之一,是与普通高等教育“十五”*规划教材《工科数:学分析基础》(第二版)相配套的教学辅导书和参考书。 本书采用问与答的形式,解答了编者根据教学基本要求及长期的教学积累所整理和提炼出来的226个高等数学中的常见问题。本书共有七章,内容包括:函数、极限、连续,一元函数微分学及其应用,一元函数积分学及其应用,无穷级数,多元函数微分学及其应用,多元函数积分学及其应用,常微分方程以及附录:向量代数与空间解析几何。 本书可供学习高等数学的读者作为学习辅导书,也可供有关教师作为教学参考书,还可供报考硕士研究生的读者作为复习参考之用。