本书针对多指标函数型数据表的结构形式,确定其预处理方法并将方法程序化;研究具有“时空”特征的动态综合评价的相关理论及其函数化的转换过程;综合评价的指标数据为多指标函数型数据时,研究指标权数的赋权方法;多指标函数型数据综合评价的集成方法研究及综合评价结果(评价函数)的分析。
刘培杰数学工作室编的《柯西函数方程--从一道上海交大自主招生的试题谈起/数学中的小问题大定理丛书》从一道上海交大自主招生试题谈起,讲授了柯西函数方程,及由此衍生的诸多问题。本书透过柯西函数方程,向读者勾勒了这道自主招生试题的全貌,指出了大学自主招生选取题目的背景及深厚内涵,考察学生的数学思维方向等,展示了函数方程在中学数学思想中的重要性。本书适合于高中生、大学生以及数学爱好者参考阅读。
本书系统地介绍了泛函分析的基础知识。全书共分五章:第1章,距离空间与赋范空间;第2章,有界线性算子;第3章,Hilbert空间;第4章,有界线性算子的谱;第5章,拓扑线性空间。本书在选材上注重少而精,强调基础性。在结构安排上,由浅入深,循序渐进,系统性和逻辑性强。在叙述表达上,力求严谨简洁,清晰易读,能够简化的证明,在保持书稿结构严谨的前提下尽量予以简化,便于教学和学生自习。本书配备了较多的习题,以备选用。本书的末尾对大部分习题给出了提示或解答要点,供读者参考。本书的第5章介绍了拓扑线性空间的基本概念,这一章的内容不是本科生教材必须包含的内容,可以作为有兴趣的读者参考。本书可以作为综合性大学,理工科大学和高等师范院校的数学各专业或其他学科部分专业本科生的教材或参考书,也可以供研究生、相关教师
多项式,指数函数,三角函数(正弦函数和余弦函数)以及许多其他函数都与整函数相联系,整函数在数学和它的应用中起着重要的作用,那些不是多项式的整函数(称为整函数)在许多方面都奇妙地将它们归入“无穷高次多项式”一类,书中讲授整函数的基本性质,它们的零点,增长速度,值之间的代数关系以及其他性质,本书基于作者的两个讲义,那两个讲义作者在莫斯科为教师进修班讲授过。只要读者具有复数和数学分析的基础知识(微分法,积分法和级数概念)就能读懂全书,本书适合师生及数学爱好者使用。
Thecorechaptersofthisvolumeprovideacompletecourseonmetric,normed,andHilbertspaces,andincludemanyresultsandexercisesseldomfoundintextsonanalysisatthislevel.Theauthorcoversanunusuallywiderangeofmaterialinaclearandconciseformatincludingelementaryrealanalysis,LebesgueintegrationonR,andanintroductiontofunctionalanalysis.Thismakesaversatiletextalsosuitedforcoursesonrealanalysis,metricspaces,abstractanalysis,andmodernanalysis.Thebookbeginswithacomprehensivechapterprovidingafast-pacedcourseonrealanalysis,andisfollowedbyanintroductiontotheLebesgueintegral.Thisprovidesareferenceforlaterchaptersaswellasanintroductionforstudentswithonlythetypicalsequenceofundergraduatecalculuscoursesasprerequisites.Otherfeaturesincludeachapterintroducingfunctionalanalysis,theHahn-Banachtheoremandduality,separationtheorems,theBaireCategoryTheorem,theOpenMappingTheoremandtheirconsequences,andunusualapplicationssuchasweaksolutionsoftheDirichletProblemandParetooptimalityinMathematicalEconomics.Ofspecialinterestistheuniquecollectionofnearly75
多项式,指数函数,三角函数(正弦函数和余弦函数)以及许多其他函数都与整函数相联系,整函数在数学和它的应用中起着重要的作用,那些不是多项式的整函数(称为整函数)在许多方面都奇妙地将它们归入“无穷高次多项式”一类,书中讲授整函数的基本性质,它们的零点,增长速度,值之间的代数关系以及其他性质,本书基于作者的两个讲义,那两个讲义作者在莫斯科为教师进修班讲授过。只要读者具有复数和数学分析的基础知识(微分法,积分法和级数概念)就能读懂全书,本书适合师生及数学爱好者使用。
本书是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强,全书共有200道例题和1200例习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会是一种享受。
刘培杰数学工作室编的《柯西函数方程--从一道上海交大自主招生的试题谈起/数学中的小问题大定理丛书》从一道上海交大自主招生试题谈起,讲授了柯西函数方程,及由此衍生的诸多问题。本书透过柯西函数方程,向读者勾勒了这道自主招生试题的全貌,指出了大学自主招生选取题目的背景及深厚内涵,考察学生的数学思维方向等,展示了函数方程在中学数学思想中的重要性。本书适合于高中生、大学生以及数学爱好者参考阅读。
首先从最简单的园和三角函数说起,逐步过渡到椭圆积分,进而带领读者初识椭球积分。在完成了这步的过渡后,数学上的深入稍稍放缓,话锋转向讨论椭圆和椭球形体里的几个具体的电磁学实例,并以矩量法的计算与之对比、相互印证,使读者始终是"接地气"的、始终站在自己的专业里学数学。在读者舒过一口气之后,作者又带领他们掀起了学习数学的第二个高潮,详细论述了椭球函数理论及其保角映射,又落实到椭球函数网络和滤波器等具体的电磁场问题上来。这样的安排,完全符合有关专业领域内高年级大学生和低年级研究生的思维方式和已有的知识结构。全书文字精炼、叙述清楚,是一本理想的工程数学读物。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、γ函数和b函数、椭圆函数、cauchy型积分。上列最后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
偏微分方程是近处来发展迅速的一门科学,它在数学与物理的很多分支领域有着重要的应用。本书是一部的教科书,其中囊括了偏微分方程其本而重要的内容,如一维波动方程、热传导方程、半平面上的椭圆方程和Scurodinger方程描述模型,都是阶段相关专业必学的内容。此外本书还包含类型甚广的习题,部分习题配有答案以供参考。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、γ函数和b函数、椭圆函数、cauchy型积分。上列最后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书系统讨论了不确定度的基础和原理,详细研究了不确定度的各种方法,分析了不确定度的多方面应用。本书可供计量测试、质量监督、认可认证、标准、科研、生产人员以及大专院校师生使用。