本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
全书内容编写系统、新颖、清晰、独到,充分体现了如下三大特色: 一、知识梳理清晰、简洁:直观、形象的图表总结,精炼、准确的考点提炼,权威、独到的方法归纳,将教材内容抽丝剥茧、层层展开,呈现给读者简明扼要、层次分明的知识结构,便于读者快速复习、高效掌握,形成稳固、扎实的知识网,为提高解题能力和数学思维水平夯实基础。 二、能力提升迅速、持续:所有重点、难点、考点,统统归纳为一个个在考试中可能出现的基本题型,然后针对每一个基本题型,举出丰富的精选例题、考研例题,举一反三、深入讲解,真正将知识掌握和解题能力提升高效结合、浑然一体,一举完成。 三、内容深入浅出、易学易用:为适应广大学子的不同需求,本书进行了科学的编排,方便考生不仅可以在有教师指导的情况下使用更是自学备考的用书。
量子输运主要探讨电子或自旋的输运性质,多用二次量子化语言表述。事实上,二次量子化算符和态矢构成的算符在表述问题时是等价的。近年来,人们在研究中发现一些输运问题用态矢语言描述有其优点。本书从态矢格林函数角度介绍著者对量子输运的研究成果,着重介绍此方法在大自旋输运系统中的应用。全书共8章。第1章介绍格林函数方法,其中列举三种方法作为对比:二次量子化语言表述的格林函数方法、态矢格林函数方法和主方程方法。第2章介绍大自旋输运系统。第3-8章介绍大自旋系统的各种输运性质,包括电流伏安特性、近藤效应、热电效应、温差电效应、自旋流等。
本书是俄罗斯综合大学和高等技术学校使用的复变函数论教材。它基于前苏联著名数学家、科学家院院士拉夫连季耶夫的讲稿,由沙巴特补充整理,并经过多次修订,使内容更为合理,应用实例更为丰富,已成为该领域一本经典教材。 本书以共形映射为基本内容,把它作为工具,广泛应用于物理学、流体动力学、气体动力学、弹性力学和电气技术中实际问题的计算以及数学的其他分支。全书包括基本概念、共形映射、函数论的边值问题及其应用、共形映射的变分原理、函数论在分析上的应用、算子法及其应用、特殊函数等。 本书可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。
《复变函数与积分变换/21世纪普通高等教育规划教材》共分8章,内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数理论,保形映射,傅里叶变换,拉普拉斯变换等. 《复变函数与积分变换/21世纪普通高等教育规划教材》条理清晰,层次分明,通俗易懂,注重解题方法的训练和能力的培养.每节后配备了丰富的习题,有利于学生掌握基本内容. 《复变函数与积分变换/21世纪普通高等教育规划教材》可供高等工科院校各专业师生作为教材使用,也可供有关工程技术人员参考.
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。 吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,国内就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的全部主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
本书主要针对近几年刚刚发展起来的一种新型混油同步方式修正函数投影同步展开研究目全书共9章回第1章介绍了混沌修正函数投影同步基本知识.第2章构建了一个Fang超混沌系统并分析其动力学行为.第3章研究了混沌系统同阶和降阶修正函数投影同步第4章基于单向搞合混沌同步原理,设计了两种混沌函数投影同步响应系统第5章研究了同结梅和异结构混沌系统的修正函数投影同步第6章研究了输人受限的混沌系统的修正函数投影同步第7章研究了混油系统的组合函数投影同步.第8章研究了以混沌系统作为复杂网络节点的复杂动态网络的修正函数投影同步第9章将混沌修正函数同步应用于保密通信,研究了基于错位函数投影同步的混沌保密通信。
本书基本上是自洽的。*部分介绍了20多年来无穷维线性系统控制理论的**发展,特别是适定、正则系统的抽象理论,也讨论了可控性、可观性、能稳性、可检性、可优性、可估性、实现,以及极点配置等几个主要的基础性概念。第二部分介绍了适定、正则系统理论在偏微分方程,主要是在几个经典的高维偏微分方程中的应用。第l章和附录中列出了列出本书所需的有穷维系统控制、泛函分析、黎曼几何的基水知识,有利于初学者入门。
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,以及积分变换。每章内容分为四节: 基本要求与内容提要 简要介绍每一章的基本要求和内容。 典型例题与解题方法 对应掌握的重点,以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析。 教材习题同步解析 详细解答主教材的全部习题。 自测题 精选了相当数量的有代表性的习题,供读者自测。 本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数与积分变换的参考书。