本书介绍了移动网格方法的历史和现状,作者根据这几年对移动网格方法的一些研究体会,写成此书。本书研究的移动网格方法要做的就是保持单元或节点数不变而通过重新分布节点位置实现自适应目标。特别地,我们将把动态网格与求解过程结合起来,用最适合求解问题的方式来生成网格,即在解的梯度大的地方网格自动加密,而在解的梯度小的地方网格自动变稀疏,其基本目标是改进计算精度,并使数值误差分布趋于均匀。本书侧重自适应网格技术,在流体计算、相场界面问题、双曲守恒律方程等问题上都有成功的应用。本书易读性强,深入浅出,提供代码,使读者容易上手实践。
非线性规划问题在经济和工程等领域中普遍存 在,具有广泛的应用价值。随着社会的发展,非线 性规划问题的规模和结果也越来越复杂,要获得相 应问题的 解也变得越来越困难。 化方法是 解决这些问题强有力的工具,人们提出了许多求解 非线性规划问题的 化方法。这些方法在机理上 大致可以分为确定性 化方法和随机性 化方 法两类,这两种方法各有千秋。 本书介绍几个求解非线性规划问题的确定性 优化方法和随机性 化方法。全书内容共10章, 分为PARTⅠ和PARTⅡ两部分。PARTⅠ针对比式和规 划、多乘积规划、几何规划等工程上出现的 化 问题,提出了几个有效的分支定界算法,并证明了 算法的收敛性,该部分属于确定性 化方法。 PARTⅡ针对群智能 化方法中的萤火虫算法及粒 子群算法的改进做了研究,探讨了收敛性等相关问 题,该部分属于随机性 化
无
本书系统地论述了矩阵扰动分析的理论、方法和新的进展,内容包括:矩阵空间的范数与度量,线性方程组和最小二乘问题的扰动理论,代数特征值问题的扰动理论等。本书不仅是总结作者多年研究工作的专著,而且是一本很好的教材,书中各节都附有难易程度不同的习题。
由科恩著的《计算代数数论教程(英文版)》介绍了148种算法,它们是数论计算的基础,其中包括与数论、椭圆曲线、素性测定和因式分解等相关的计算。 书中对每种算法都作了完整的理论介绍,将学习者需要的理论基础降到 。书中对每个算法的详细描述实现了其直接在计算机上的运行,并且给出了众多的进一步的执行提示。书中的许多算法在别的书上从来没有被看到过,或者说它们 次以书的形式出现在我们面前。
本书系统介绍一类含中间变量的半离散Hardy-Hilbert不等式的拓展性应用。全书分十章四个部分,第1章为第一部分,论述以Hardy-Hilbert不等式为中心的Hilbert型不等式的理论背景及思想方法;第2章为第二部分,论述一类含两个中间变量的半离散Hardy-Hilbert不等式的理论内容,为下面的拓展应用奠定基础;第3章至第6章为第三部分,按中间变量个数展开论述半离散Hardy-Hilbert不等式如何拓展到涉及多重可变上限函数及高阶导数中;第7章至第10章为第四部分,论述了添加涉及部分和后的新一轮拓展性应用。本书各章内容相对独立且互相联系,形成一个相对严密的理论应用体系。 本书主要应用实分析、不等式及特殊函数的理论方法,辅以近代发展起来的权函数及参量化思想技巧。书中多数内容引用了作者及其科研团队成员的最新研究成果,具有较高的学习研究及理论应用价值。
\\\\\\\"本书将从强化学习 基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼 公式,之后会推广到基于模型的和无模型的强化学习算法, 会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从 基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们 深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。\\\\\\\"
互补约束优化是一类带均衡约束的数学规划问题, 在工程设计、交通网络、通信网络、**控制、经济等领域有广泛的应用. 本书主要介绍互补约束优化的理论和算法, 内容包括互补约束优化的应用背景及其约束规格和**性条件、线性互补约束优化的快速算法、非线性互补约束优化的光滑化算法、非线性互补约束优化的松弛方法等.