《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
《强基计划数学攻略》是一本针对准备参加强基计划的高中生的数学教材,涵盖了数学基础知识的主要内容。本书的主要内容包括数与方程、不等式、集合与逻辑、函数、三角比与三角函数、数列、微积分初步、平面向量与复数。 本书的特色在于,针对每个主题,书中都有大量的例题和习题,以及详细的解答和解析,可以帮助读者深入理解数学的基本概念和应用,同时提高数学解题能力。此外,本书还提供了一些实用的技巧和方法,帮助读者更好地掌握数学知识。 适合读者对象是需要系统地学习强基计划基础知识的学生和初学者。同时,本书也适合数学教师使用,作为课堂教学和辅导材料。 总之,《强基计划数学攻略》提供了全面而深入的数学知识体系,对于希望掌握数学基础知识和提高数学解题能力的读者来说,是一本非常有价值的参考书。
许多人认为数学离我们很远,除了买菜根本用不着。但他们错了。在英国,280万数学科学从业者一年就为经济贡献了2080亿英镑 也就是说,10%的劳动力贡献了16%的经济产值。 为什么公众对数学的认识与现实之间存在如此巨大的鸿沟?作者在书中探讨了这个问题,并从政治、医疗、气候、出行、娱乐、信息安全、智能生活等多个角度切入,展示了在日常生活的背后,数学如何以令人惊讶的方式发挥着至关重要的作用。
本书生动详尽地叙述了从古到今人类对π不断加深的认识和艰难曲折的探索,以及有关π的各种知识:定义、名称、符号、性质……。林林总总的数值让人目不暇接,形形色色的算法引人拍案叫绝,多如牛毛的奇闻趣事让人心旷神怡,五花八门的名题、趣题使人赏心悦目,难解难破的谜团雾障令人梦绕魂牵…… 本书不但把历史悠久、和人类如影随形的π融人整个数学以至科学之中,而且把人文精神融人其中,对提高人的综合素质,特别是培养人的健康心理大有裨益。 本书适合具有中等及以上文化的青少年或成人阅读,也是研究π的重要参考书。徜徉在n那“依旧”的“涛声”之中,感受阿基米德、祖冲之、贝拉德……的魅力,您会流连忘返。 “心会跟π?起走,说好不回头。”??看了这本书,或许您也会成为一个“π迷”。
(第二版)张景中著北京内容简介本书从小学生知道的三角形内角和的知识以及三角形面积公式出发,举一反三,推陈出新,直观而严谨地给出正弦的新定义.在此基础上,轻松得到正弦定理、和角公式、勾股定理等一系列三角公式和几何定理,揭示出几何、代数和三角的基本知识之间的密切联系,以三角为主线,构建了初等数学的新体系.书中思想新颖,方法简明犀利,说理严谨,特别着力于从平凡处发掘创新的思路,引导读者发现问题深入思考.全书分为5个部分:正弦和正弦定理;正弦和角公式;余弦和余弦定理;四边形;圆和正多边形. 大体上覆盖了初中应掌握的几何、代数和三角的基本知识.书中每节都安排了例题和习题.
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
本书以密码俱乐部的活动为线索,用有趣的活动和叙事化的语言向读者展示了各种用数学加密和解密的方法。本书通俗易懂,读者只要具备中学数学的知识基础,就可以徜徉在密码的世界里,与各种密码系统嬉戏。本书中涉及恺撒密码、代入式密码、模运算密码、乘法密码等经典的密码,也涵盖了现代密码学上的密码,同时提供了丰富了历史小故事。本书使用灵活,不仅适合人个阅读,也可以作为活动材料,与朋友们一起游戏。本书可以让读者认识到数学是一个有趣且迷人的学科!
《从矢量到张量:细说矢量与矢量分析,张量与张量分析》是 高等数学启蒙小丛书 系列中的一本。 张量的概念由 G.Ricci 于19世纪末提出的,研究张量旨在为几何性质和物理规律的表达寻求一种在坐标变换下不变的形式,在相对论中得到广泛应用。它既是物理学概念,又是一个数学的概念,是微分几何研究的一个方向,也是现代机器学习的基础。但是如果直接讲解,读者很难理解。 既有大小又有方向的量(在物理学中称作矢量,在数学中称作向量。) 则相对容易理解,作者以此为起点,分为六个部分,二十个章节,一步步向读者介绍,直至张量。 如:部分从矢量的袋鼠运算讲起,详述矢量的矢量混合积;第二部分,引入矢量三重系;第三部分,先讲解变矢量的微分运算;第四部分,讨论矢量场的线积分与面积分;第五部分,从曲线坐标入手,讨论曲线坐标下的向
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以作为广大教师的教学参考书,还可以为毕业生考研复习和众多成人学员自学提供富有成效的帮助。读者使用本书时,宜先独立求解,然后再与本书作比较,这样一定会获益匪浅,掌握较多的有用知识。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。