《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书将概率论和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学经济学、化学和生物学等领域中的广泛应用,特别阐述了贝叶斯理论的丰富应用,弥补了其他概率论和统计学教材的不足,全书分为两部分: 部分包括10章,讲解抽样理论、假设检验、参数估计等概率论的原理及其初级应用;第二部分包括12章,讲解概率论的 应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容全面,体例完整,本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为本科生和研究生相关课程的教材。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
《高等代数学(第四版)》 本书是普通高等教育“十五”“十一五”和“十二五”重量规划教材.全书以线性空间为纲,在线性空间的框架下展开高等代数的主要内容. 内容包括:行列式、矩阵、线性空间、线性映射、多项式、特征值、相似标准型、二次型、内积空间和双线性型等. 本书力求深入浅出,在介绍抽象的数学概念时交代其来龙去脉,在讲解精妙的数学方法时交代其背景思路. 书中还有大量精选的例题和习题.本书是高等学校数学系的教材,也适合统计系、理工科各系,以及经济、管理类专业的学生、研究生和教师参考. 《高等代数(第四版)》 简介本书是大学本科生学习“高等代数”(或“线性代数”)的参考书. 内容包括:行列式、矩阵、线性空间与线性方程组、线性映射、多项式、特征值、相似标准型、二次型、内积空间和双线性型等. 书中有1270余道
本书以手册的形式涵盖了人们日常工作、学习所需用到的数学知识内容包括算术、函数、几何学、线性代数、代数学、离散数学、微分学、无穷级数、积分学、微分方程、变分法、线性积分方程、泛函分析、向量分析与向量场、函数论、积分变换、概率论与数理统计、动力系统与混沌、优化、数值分析、计算机代数系统等,并专门设有数学常用表格章节、方便读者查阅。本书适合科研工作者、工程师、高校师生以及广大对数学感兴趣的读者查阅参考。
本书是一部英文的数学分析专著。本书旨在展示章节中所选主题的理论、方法和应用,这些主题似乎在近期的研究中具有重要性和使用性。本书强调以合理的细节呈现一个想法的基本发展情况,并包含了某个研究领域的近期新发展情况。本书试图以独立的方式呈现书中内容,针对每个结果提供至少一个证明,并给出足够的参考文献使感兴趣的读者可以在持续发展的领域中进行后续的研究。
本书主要通过Riemann猜想的历史及进展,中外名家论Riemann函数与Riemann猜想以及Riemann函数面面观三部分来介绍Riemann猜想。Riemann猜想是关于Riemannζ函数ζ(s)的零点分布的猜想。 本书适合于大学师生以及数学爱好者参考阅读。
内容简介
本书为统一定价套书,包含《阿贝尔群的可确定性——问题、研究、概述》《素数规律》《函数的幂级数与三角级数分解》《星体理论的数学基础——原子三元组》《技术问题中的数学物理微分方程》《概率论边界问题——随机过程边界穿越问题》《代数和幂等配置的正交分解——不可交换组合》7个分册。《阿贝尔群的可确定性——问题、研究、概述》从多方面对阿贝尔群的确定性进行了研究。《素数规律》主要介绍了素数的相关知识和理论。《函数的幂级数与三角级数分解》主要介绍了函数的幂级数与三角级数分解的相关知识及理论。《星体理论的数学基础——原子三元组》消除了多年没发现经典世界数学的致命错误,将多个不同的数学领域深化和结合。《技术问题中的数学物理微分方程》给出了数学物理微分方程的综述和技术问题中的数学物理微分方程等内容
%26nbsp;%26nbsp;本书主要介绍分数阶傅里叶变换的发展历程、定义及性质,基于分数阶傅里叶变换的分数阶算子和分数阶变换,分数阶傅里叶域滤波器以及线性调频信号的检测和参数估计问题;分数
本书的个目的是对行波解的分类和对奇异非线性行波方程所产生的峰、周期峰、伪峰和紧子的概念进行更系统的解释。从奇异摄动理论的动力系统和思想,我们证明周期性峰是行波系统的两个时间尺度光滑经典解。PeaKon
本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一
自1857年由黎曼引入以来,黎曼曲面的模空间和相关对象已成为很重要的空间之一,通过多种不同方法被广泛研究。它们与局部对称空间密切相关。本书清晰、系统地介绍了黎曼曲面的模空间、代数曲线、黎曼曲面上向量丛