许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛数论知识教材。书中涵盖了整除、优选公约数、算术基本定理、数论函数、同余方程、模p多项式、二次剩余、p进赋值等主题。通过精彩的例题重点展现了带余除法、裴蜀定理、高斯引理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估计、局部一整体原则的应用。课后共有二百多道习题供练习。本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的人员参考使用。
?书 ? ? ? 名 ? ?应用数理统计(第三版) ?作 ? ? ? 者 ?刘剑平 等 主编 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2019年06月 ?I ?S ?B N ?978-7-5628-5890-4 ?页 ? ? ? 数 ?263页 ?字 ? ? ?数 ?413千字 ?开 ? ? ? 本 ?16 开 ?重 ? ? ?量 ?0.47千克 ?定 ? &
本教材分上、下两册,上册由前六章构成,依次为集合论的基本概念、抽象代数的基本概念、Green关系与正则半群、群(特别地,有限群)、环与理想,模与线性空间;下册由后两章构成,依次为域与域的扩张,Galois理论导引。本书为上册。本教材的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章或前六章(特别是未加*的部分)可用作数学类各专业必修基础课程抽象代数的教材或参考资料;下册的后两章可用于后续选修课程域论与Galois理论的教材或参考资料。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
本书主要介绍数值计算方法及其有关的理论,内容包括插值法、函数逼近与曲线拟合、数值积分与数值微分、解线性方程组的直接法、解线性方程组的迭代法、非线性方程与方程组的数值解法、常微分方程的初值问题、矩阵特征值和特征向量计算等内容,章末配有数值实验习题,并提供编程及应用MATLAB数学软件完成数值实验两种解决方案,并在后一章提供一些数值分析应用案例.本书注重实际应用能力和计算能力的训练,注意基本概念、基本理论、基本方法的讲授,但不追求理论上的完整性.虽然起点不是很高,但跨度大,从学习高等数学和线性代数开始,直到数值分析的一些较新成果,范围及深度都有较大弹性.
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以作为广大教师的教学参考书,还可以为毕业生考研复习和众多成人学员自学提供富有成效的帮助。读者使用本书时,宜先独立求解,然后再与本书作比较,这样一定会获益匪浅,掌握较多的有用知识。
《高级计量经济学》是雨宫健教授在长年担任Joural of Econmometrics主编之后编写的研究生层次的计量经济学教材,融合了计量经济理论研究的方法和技巧,也是一本值得计量经济学的专业人员认真阅读的计量经济学著作。在计量经济学理论研究的学术论文中,《高级计量经济学》是一本被广泛引用的参考文献,迄今为止的累计引用数高达3 200次以上。《高级计量经济学》着重讨论微观计量经济学涉及的各种理论问题,特别是在微观计量分析的定性模型的详细讨论中融入了作者的研究心得经验。《高级计量经济学》从经典小二乘法出发,结合拓展的各种回归分析方法,说明计量经济理论涉及的大样本理论,利用大样本理论讨论微观计量分析出现的极值统计量的性质及各种微观计量模型的统计推断问题。考虑到计量经济理论体系的完整性,《高级计量经济学》也适当介
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
“高等运筹学”是系统科学、应用数学、管理科学与工程、信息科学等众多学科博士、硕士研究生的一门必修的应用基础课程. 通过本书的学习, 使学生比较系统地掌握运筹学的基本理论, 了解前沿领域与某些应用背景, 培养学生应用课程所学知识解决现实工程和管理中碰到的最优化、平衡、综合评价、决策分析等问题, 使学生能够根据具体的应用问题建立运筹学模型, 提高学生的理论分析能力、数学建模及求解能力. 本书是在本科“运筹学”课程基础上, 提高理论起点, 以泛函分析、凸分析、高等概率统计为数学基础, 结合经济学、金融学、风险管理、多目标决策、多因素评价、计算机网络、无线通信等相关学科分支的应用背景, 全面提高学生的理论基础和建模水平. 内容主要包括Hilbert空间上的最优化理论、随机决策基础、效用理论、多准则决策与群决策、博弈论和复杂
自从1978年R. Ap ry证明了 (3)的无理性以来, 函数在奇数上的值的无理性研究一直是引人注目的数论课题。本书给出与此有关的一些基本结果(如 (3)的无理性的Ap ry原证和Beukers的证明等)以及近些年来T. Rivoal和W. Zudilin等人的新进展(如 (2k 1)(k 1)中有无穷多个无理数, (5), (7), (9), (11)中至少有一个无理数,等等);此外,还给出无理数理论的一些经典结果和方法,如无理数的意义和分类、无理性的刻画及度量、无理数的有理逼近和连分数展开、数的无理性证明的初等方法、无理数的构造、无理数的正规性等;特别着重于数的无理性的判别法则和一些特殊类型的无理数(如Erdos的无理性级数、Mahler小数、Champernowne数、Fibonacci数、Lucas数及Fermat数的倒数的级数等)。
本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书是丢番图逼近论的简明导引,包括实数的齐次和非齐次有理逼近、与代数数有关的逼近、转换定理、度量定理以及模1一致分布等基本结果和方法,并适度介绍复数和p-adic数的丢番图逼近与其他有关问题,以及一些新的进展。
《高等代数范例选解(第2版)》通过一些范例(约130个题或题组)和配套习题(约240个题或题组)来提供高等代数习题的某些解题技巧,涉及基础性和综合性两类问题。问题选材范围比较广泛(包含近期某些硕士研究生入学考试试题),范例解法具有启发性和参考价值,所有习题均附解答或提示。本书可作为大学数学系师生的参考书,也可作为研究生入学应试备考资料。
数的几何是数论的一个经典分支,本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质、Minkowski第一和第二凸体定理、Minkowski-Hlawka容许格定理、Mahler列紧性定理、二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。