本书是著名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法一一合情推理(即猜想)。本书通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,本书的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛数论知识教材。书中涵盖了整除、优选公约数、算术基本定理、数论函数、同余方程、模p多项式、二次剩余、p进赋值等主题。通过精彩的例题重点展现了带余除法、裴蜀定理、高斯引理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估计、局部一整体原则的应用。课后共有二百多道习题供练习。本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的人员参考使用。
?书 ? ? ? 名 ? ?应用数理统计(第三版) ?作 ? ? ? 者 ?刘剑平 等 主编 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2019年06月 ?I ?S ?B N ?978-7-5628-5890-4 ?页 ? ? ? 数 ?263页 ?字 ? ? ?数 ?413千字 ?开 ? ? ? 本 ?16 开 ?重 ? ? ?量 ?0.47千克 ?定 ? &
本教材分上、下两册,上册由前六章构成,依次为集合论的基本概念、抽象代数的基本概念、Green关系与正则半群、群(特别地,有限群)、环与理想,模与线性空间;下册由后两章构成,依次为域与域的扩张,Galois理论导引。本书为上册。本教材的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章或前六章(特别是未加*的部分)可用作数学类各专业必修基础课程抽象代数的教材或参考资料;下册的后两章可用于后续选修课程域论与Galois理论的教材或参考资料。
《概率论与数理统计》一书主要介绍了概率论与数理统计的基本概念、基本理论与方法。全书共10章,内容包括随机事件与概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验、方差分析与回归分析、Excel在数理统计中的应用等。每章均附有习题,附录部分还附有部分历届研究生入学考试概率统计试题。本书简明易懂,概念引入自然实用,便于学生理解和掌握。
最优化是运筹学的一个重要分支,在很多领域具有广泛的应用。本书系统地介绍了线性规划、无约束优化及约束优化的基础理论和求解方法,主要内容包括:线性规划的对偶理论与最优性条件、无约束优化的最优性条件、约束优化的最优性条件与鞍点定理;求解线性规划的单纯形算法、内点算法、非内部连续化算法;求解无约束优化的最速下降法、牛顿法、共辄梯度法、拟牛顿法、非单调线搜索法、信赖域法;求解约束优化的序列无约束优化法、可行方向法、序列二次规划法等,也简单介绍了多目标规划的基本理论与求解方法。本书内容丰富,力求深入浅出、通俗易懂,每章后都附有大量的习题,便于教学。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书是依据*颁布的《工科类本科数学基础课程教学基本要求(2014年版)》编写的。编者改革了高等数学教材传统编写方式,重背景、重体系、重探究、重体验、重实践、重反思;知识展现通俗、易懂、简洁、形式多样,便于教师教学和学生自学;每一节设计了一些问题讨论题,这些问题基本是开放性的,目的是帮助学生检验学习效果,引导学生加深对知识的理解,提高思维深刻性。每章结尾按基础知识考查和综合能力提高设计了A,B组测试题,供学生自我检测。本书分上、下两册,共11章,下册包括多元函数的微分及其应用、重积分、曲线积分与曲面积分、常微分方程、无穷级数等内容。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
本书属于数学概览系列,选编了杰出数学家Robert Langlands的综述性文章,介绍了Langlands纲领的起源和发展及其创始人的数学生活。Langlands纲领将看似无关的学科如数论、分析、代数和几何联系在一起,揭示了所有数学的深层结构,并提供了解决棘手问题的新方法,现在经常被描述为 大统一数学理论 。本书由季理真选文,征求了作者和其他著名数学家的意见,并可 获得无偿的专有出版权,大多数文章还有作者本人及其他数学家的评论。 书中所涉及的内容称得上是20世纪数学上重要的成就之一,但大部分都是思想性的文章,并非对某个定理的详细证明,有利于读者更快地一览当代数学的前沿。透过书中的内容,读者可以体会Langlands如何看待数学并提出Langlands纲领。Langlands教授还亲自为本书撰写了很长的自序,分享了他的数学生涯,其对所关心的数学的想法和热情也对
《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》是г.м.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。 《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后
《工科数学分析(下册)》是以*工科数学课程指导委员会颁布的高等工科院校本科《高等数学课程教学基本要求》为纲,在多年开设工科数学分析课程的基础上,广泛吸取国内外知名大学的教学经验而编写的《工科数学分析》课程教材.它是一门重要的基础理论必修课,不仅包含了一般理工科 高等数学 的全部内容,而且加强和拓宽了微积分的理论基础,注重无穷小分析思想的应用,在数学逻辑性、严谨性及抽象性方面也有一定的要求和训练。《工科数学分析(下册)》可作为理工科院校对数学要求较高的非数学类专业本科生教材,但如果略去理论性较强的部分和带*号的内容,其他专业也可以使用。