苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,介绍坐标法,以平面解析几何为主,还包括一些代数问题,给出复数的几何表述以及多项式的复变函数表述,从而能够证明高等代数基本定理。本书还介绍空间中的笛卡儿坐标和立体解析几何,可供喜欢数学的高中生以及中学和大学的教师参考。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书是为配合清华大学电子学教研组编,童诗白、华成英原著,华成英主编的《模拟电子技术基础(第六版)》的使用而编写的,对教材中的每一章均按“内容概要”“难点释疑”“例题精解”“习题解答”四个部分编写,提炼重点,解决难点,示范性地分析和解决问题。本书既可作为教师手册,又可作为学生的辅导教材,还可作为自学者的参考书。
本书在2013年版的基础上,集撷作者多年教学心得和教研成果,根据读者反馈进行修订.《BR》本书分为上、下两册.第二版保留版的基本结构,包括知识框架、教学基本要求、主要内容解读、典型例题解析、习题选解及自测题六个部分其中,教学基本要求与新修订的教学太纲要求相适应,典型例题解析注重解题思路、方法及总结,习题远解按照高等数学的章节顺序编排,有层次地选择部分习题,注重一题多解.每章后附自测题及参考答案,供读者检测.《BR》
本书依据全国大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照考研数学考试大纲编写而成,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含 基本概念与内容提要 竞赛题与精选题解析 与 练习题 三个部分。其中,竞赛题选自全国大学生数学竞赛试题(非数学专业组),全国硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年全国硕士研究生入学考试试题中也挑选了一些 好题 ,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难度的创新
《高等代数范例选解(第2版)》通过一些范例(约130个题或题组)和配套习题(约240个题或题组)来提供高等代数习题的某些解题技巧,涉及基础性和综合性两类问题。问题选材范围比较广泛(包含近期某些硕士研究生入学考试试题),范例解法具有启发性和参考价值,所有习题均附解答或提示。本书可作为大学数学系师生的参考书,也可作为研究生入学应试备考资料。
古算诗词题是我国珍贵的文化遗产。我国古算家文理兼优,把博大精深的古算名题和算法推理编成耐人寻味、朗朗上口的诗词或歌谣,使抽象难懂的数学题形象生动、易于理解和记诵,同时激发人们学习数学的兴趣。本书精选出古代数学中的约200首中外诗词题进行注释,译为白话文,并且重点给出古今240多种不同解法,有的还补充出原著省略的算理。本书按主要解题的方法为序编排诗词题,方便读者查阅、使用。
本书是全国高等教育自学考试“概率论与数理统计(工)”指定教材,本次改版是根据自考办在规划课程时,重新设置了本课程的名称,进行的改版。本书内容的修订,主要根据《概率论与数理统计(工)自学考试大纲》,对例
本书是根据《概率论与数理统计》教材,依据高等院校“概率论与数理统计”课程的基本要求,并结合编者多年的教学经验,以及学生学习中的实际问题编写的配套学习指导书。全书共9章,主要内容包括随机事件与概率、离散
韩华等编著的《高等数学学习与考试指导》是针对远程教育的工科类专科学生的教与学精心设计的学习指导书。 《高等数学学习与考试指导》分上、下两册,全部内容共分为十一章和五个附录。每章均由四部分构成。 部分是学习指导,包括章节学习的重点、难点、常见题型及学习方法指导。 第二部分是学习内容,分节展开写。每一节包含要点归纳、典型例题、本节小结和思考解答。其中要点归纳是对教学重点内容进行简明扼要的归纳和说明,对难点知识进行直观通俗的解释;典型例题注重对解题思路进行指导,强调基本题型的分析和解题过程的指点;本节小结是以提纲的形式提炼本节的知识点,方便学生巩固复习;思考解答是在掌握基本知识和基本题型的基础上提供进一步思考的内容,以便学生增强分析问题的能力和解题能力。加“*”的章节,不作为
本书是一本教人如何学习高等数学的书。它的关注点不是定义、定理、性质,以及后两者的证明,而是以一道道具体的题为切入点,揭示数学问题的内在逻辑和方法选择的前因后果。它既可以帮助初学高等数学的本科生学好数学,也可以作为考研数学复习的参考书。 本书共有极限与连续、一元函数微分学、一元函数积分学、常微分方程、代数视角的多元函数微积分学、几何视角的多元函数微积分学、无穷级数七个内容,详细阐述了44个问题、267道例题,囊括了各类高等数学教材的主要内容,以及全国硕士研究生统一招生考试数学一、数学二、数学三的主要考点。
本书共9章,内容包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分、定积分的应用、常微分方程以及数学建模。 除第9章外,每节后都配有丰富的习题,按难度又分为基础题和提高题,以满足分层次教学需要;每章后配有复习题,便于对本章的知识掌握程度进行检测。另外,为了培养学生的数学文化素养,激发数学学习兴趣,前8章每章后都精选了阅读材料。附录中配有高等数学预备知识及习题参考答案,方便自学自测。 本书可作为高职高专工科类、经管类各专业学生的高等数学教材,也可供自学微积分的人员参考。