《代数学方法(*卷) 基础架构》主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。《代数学方法(*卷) 基础架构》可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
本书是为数学系研究生讲当代的基础代数数论,亦合适数学系三四年级本科生学习。全书分为三部分:数域论、同调论和p 进理论。在数域论中讲述代数数论的中心思想:局部- 整体数论;在同调论中用同调代数方法讲类域论的核心结构:类成;在p 进理论中,我们从无穷维p 进泛函分析开始,然后讨论赋值环结构、晶体和Galois 表示。全书由Dedekind环开始,而以Dedekind 环的L-函数结束。代数数论在各种电子信息工程中的应用与日俱增,本书的内容是使用代数数论的人的知识。本书适合大学数学系的本科生和研究生阅读参考。
少女娜嘉的姐姐碧安卡在一场“计算仪式”中离奇死亡。在寻求真相的过程中,娜嘉无意间被吸入一面镜子中,并遇到了可以进行“命运数”分解的精灵族。通过素数的相关计算,娜嘉发现了一个巨大的阴谋,以及这个“数之世界”的真相…… 本书是以奇幻小说形式创作的初等数论科普读物。作者将初等数论中的计算原理、数的性质等知识转化为魔法、祝福、诅咒,打造出了一个由数构成万物的奇幻世界,并通过讲述数论中的相关证明,以悬疑解谜的剧情逐步呈现出数的奇妙魅力。本书可作为了解初等数论与算法的趣味读物,也可作为引导读者感受数学魅力的普及读物。
哈德尔所著的《代数几何讲义(第2卷)(英文版)》分为2卷,全面介绍了现代代数几何的概念与理论。全书分为10章, 卷包括第1章至第5章。第2卷包括第6章至 0章。第2卷作者首先引入概型理论的基本概念,随后介绍交换代数和概型等内容。第2卷目次:概型理论的基本概念;交换代数;射影概型;曲线和Riemann-Roch定理;曲线和雅克比行列式用的皮卡函子。
哈德尔所著的《代数几何讲义(第2卷)(英文版)》分为2卷,全面介绍了现代代数几何的概念与理论。全书分为10章, 卷包括第1章至第5章。第2卷包括第6章至 0章。第2卷作者首先引入概型理论的基本概念,随后介绍交换代数和概型等内容。第2卷目次:概型理论的基本概念;交换代数;射影概型;曲线和Riemann-Roch定理;曲线和雅克比行列式用的皮卡函子。
哈德尔所著的《代数几何讲义(第2卷)(英文版)》分为2卷,全面介绍了现代代数几何的概念与理论。全书分为10章, 卷包括第1章至第5章。第2卷包括第6章至 0章。第2卷作者首先引入概型理论的基本概念,随后介绍交换代数和概型等内容。第2卷目次:概型理论的基本概念;交换代数;射影概型;曲线和Riemann-Roch定理;曲线和雅克比行列式用的皮卡函子。
冯滨鲁、张玉峰、董焕河著的《扩展可积方程族的代数方法》在简要介绍可积耦合系统靠前外研究现状及相关概念的基础上,主要介绍几类李代数及其扩展李代数的构造方法,并利用扩展李代数生成几类方程族的可积耦合,随后
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至 的。本书针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中 重要且实用的基本内容,而不涉及很专门的课题。在内容的安排上,采取了“低起点,高坡度”的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。
花拉子米的《算法》与《代数学》是他的代表性著作,也是数学 具有重要价值的著作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。
南秀全编著的《奇数偶数奇偶分析法》共分三章,分别介绍了奇数和偶数的基本性质,奇偶分析法在解题中的应用,以及奇数和偶数的特殊表示法。每节后都配有相应的习题,供读者巩固和加强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用。