内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
《代数学方法(*卷) 基础架构》主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。《代数学方法(*卷) 基础架构》可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次曲面等。本书的编写原则是关注数学概念的起源,遵循数学理论的发展历程,强调理论的整体性和内在联系。书中配有大量编者精心挑选的习题和训练与提高题,既有助于强化读者对课程内容的理解,也为后续的代数学课程埋下了大量伏笔。
莫宗坚、蓝以中、赵春来编著的《代数学(下修 订版)/现代数学基础》为《代数学》下册,主要讲述 交换代数的基本知识,内容包括环论、赋值论、 Dedekind整环及同调代数。这些都是交换代数的精华 内容,是学习代数几何、代数数论等现代数学的 基础。 本书内容丰富,直观性强,推理自然,解释详尽 。本书的独到之处是特别注重对于交换代数的背景以 及与其他学科的联系的介绍。书中精选了大量的例题 与习题。 本书可作为高等学校数学专业研究生教材,也可 供数学工作者参考。
本书是一本涉及代数学和编码理论的基础性读物。作者用两章篇幅,以尽量少的抽象数学概念和语言来阐述这些编码理论所需要的代数知识,然后介绍编码理论中的两类码,即第三章的伪*序列和第四章的纠错码。第三章完整地介绍了移位寄存器序列,特别是线性移位寄存器序列的理论。第四章介绍了几类重要的纠错码。后在第五章,介绍了编码理论中出现的几个代数问题。 第三版除校正修订本的排印错误,改进符号表示外,在内容上也做了重要的修改和增补,特别在第三章增加了序列线性复杂度的重要概念,并用这个概念简化了解线性移位寄存器综合问题的Berlekamp-Massey迭代算法的证明 本书可供工程类、信息类打算进入编码理论或密码理论的大学生、研究生作为教学参考书,也可供数学类专业学生和从事编码和密码工作的研究人员参考。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书分上、下两册出版。 莫宗坚、蓝以中、赵春来编著的《代数学(上第2 版)/现代数学基础》主要讲述近代代数的初步知识, 内容包括集合论与数论、群论、 多项式论、线性代数以及域论。 本书内容丰富,直观性强,推理自然,解释详尽 。此书的独到之处是 特别注重对于代数学的背景、基本思想以及与其他学 科的联系等方面的 介绍。书中精选了大量的例题和习题。本书的起点低 ,由浅入深。具有 高等代数基础知识的读者皆可以阅读本书,进而学到 现代代数学的较大部 分基础知识。 本书可作为高等学校数学系 高年级学生以及研究 生的教材,也可供 数学工作者参考。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
本书为线性代数入门的科普读物,书中以“如何理解线性代数”“如何理解矩阵的基础概念与计算方法”为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
本书编者依据线性代数的学科特征,并融入自己多年来的教学经验,详解教材每一章的学习目的和要求,使学生在学习时心中有数,有的放矢。此外,还包括疑难解惑,使学生对学习中遇到的难点能迎刃而解,便于掌握线性代数的实质;例题解析,其中有介绍基本概念和基本运算方法的计算题和证明题,有一题多解的开拓思路题,也有较灵活的综合题。
《普通高等教育“十二五”规划教材:图学基础教程(第2版)》为普通高等教育“十二五”规划教材。全书根据2009年颁布的《技术制图》、《机械制图》等有关*标准编写;根据我国目前的实际情况,在计算机绘图相关内容中,继续采用图形软件AutoCAD 2006版本,与相关工程制图内容相结合,以基本操作、绘图方法与技巧、应用为主线进行编排,采用基础操作集中介绍,增加了操作步骤详细的实例,同时增加了AutoCAD 2010版本的必要介绍;为使教材更加全面、系统,增加了机械图部分,主要介绍零件图和装配图;本书反映该课程*的研究成果,采用*、*准确的术语定义,结构更合理,内容浅显易懂,叙述准确精炼。《普通高等教育“十二五”规划教材:图学基础教程(第2版)》可作为普通高等院校少学时非机类、非土类专业的教材,也可供相关人员参
本桥洋一主编的《解析数论(英文)》主要介绍了解析数论的 进展,包含了解析数论领域 领先人物的杰出贡献,讲述了Zeta函数、关于哥德巴赫猜想的经典问题,以及丢番图方程等相关问题。本书适合数学系高年级本科生、研究生,以及数学爱好者参考阅读。
本书内容贯彻了“教材全解系列”讲解细致、层次清晰、深入浅出的特点,并在此基础上突出了三大亮点: 1.过程步骤详,方法技巧全。 对于课后题和本书选编的例题,本书都给出了详尽的解题步骤,有的习题还给出多种解法,方便读者比较各种解题方法,掌握多种解题技巧。 2.关键步骤加批注,讲解更到位。 “本章课后习题全解”部分根据题目的难度和重要性,将习题分三个等级,并在题号前标示出“易”、“中”、“难”。此部分不但解答步骤详尽,并且关键步骤都加了注解,方便读者更加高效地学习。 3.密切联系考研,精选并详解考研真题。 在“常考基本题型”、“本章综合拔高题型精讲”栏目里,精选了近年考研经典题目,详细阐述解题方法和技巧,部分例题给出了两种及两种以上的解法,让读者了解本章节知识点在考研中的考查
本书属于美国数学会影印系列。本书收集的关于向量丛和相关主题的一系列前沿文章源自2006年10月举办的Clay数学研究所的专题讨论班,讨论班聚集了一批受益于P. E. Newstead在20世纪60年代首次访问美国时的开创性工作的学者们。向量丛的模空间在60年代时还处于萌芽阶段,但是现在,就像在本书中所展示的,它已经成为辛几何、数论、数学物理和代数几何的一个强大工具,在21世纪初已呈现出生机勃勃的发展趋势。 这些文章需要读者具备代数几何、辛几何和泛函分析的实用知识,而这些开拓性的思想或许会激励诸多方向上的工作,例如: Langlands纲领、在曲面和三维流形上的向量丛稳定性准则、与模空间的算术性质有关的Abel簇和Brauer群上的线性列。 本书适合于对代数、辛几何和微分几何感兴趣的研究生和专业研究人员阅读。
This book mainly introduces some new design methods and ideas aboutfractional-order nonlinear systems, the main contents include: exponentialstability analysis and adaptive projective synchronization for fractional-order T-S fuzzy neural networks; projective synchronization for two identical andnonidentical time-delayed fractional-order T-S fuzzy neuralnetworks; mixed H_.,/passive projective synchronization for fractional-orderneural networks and fractional-order memristor-based neural networks; H tracking control and adaptive inter val type-2 fuzzy sliding mode control for fractional-order nonlinear systems.
本书向读者介绍了代数学自诞生以来的发展历程,内容涵盖代数学中的重要概念,如未知量、抽象概念、方程、向量空间、域论、代数几何,等等。作者以诙谐的笔触展现了代数几千年发展史中的重大事件和核心人物,并介绍了代数的基本知识,以代数这一重要而有趣的角度呈现数学思维的戏剧性进化历程,向读者展现了一种感知世界的全新方式。作者凭借历史学家的叙事能力,带领读者踏上一段令人称叹、充满挑战的数学之旅。本书适合对代数学及其历史感兴趣的读者阅读。
本书向读者介绍了代数学自诞生以来的发展历程,内容涵盖代数学中的重要概念,如未知量、抽象概念、方程、向量空间、域论、代数几何,等等。作者以诙谐的笔触展现了代数几千年发展史中的重大事件和核心人物,并介绍了代数的基本知识,以代数这一重要而有趣的角度呈现数学思维的戏剧性进化历程,向读者展现了一种感知世界的全新方式。作者凭借历史学家的叙事能力,带领读者踏上一段令人称叹、充满挑战的数学之旅。本书适合对代数学及其历史感兴趣的读者阅读。
C*-代数和有限维逼近(影印版)