介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本教材分上、下两册,上册由前六章构成,依次为集合论的基本概念、抽象代数的基本概念、Green关系与正则半群、群(特别地,有限群)、环与理想,模与线性空间;下册由后两章构成,依次为域与域的扩张,Galois理论导引。本书为上册。本教材的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章或前六章(特别是未加*的部分)可用作数学类各专业必修基础课程抽象代数的教材或参考资料;下册的后两章可用于后续选修课程域论与Galois理论的教材或参考资料。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本书系统阐述线性模型的基本坪论、方法及其应用,其中包括理论与应用的近期发展。全书共分九章,第一章通过实例引进各种线性模型,第二章讨论矩阵论方面的补充知识,第三章讨论多元正态及有关分布。从第四章起,系统讨论线性模型统计推断的基本理论与方法,包括:最小二乘估计、假设检验、置信区域、预测、线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
随着计算机技术的飞速发展和广泛应用,许多实际问题得以通过离散化的数值计算而得到定量的解决。而线性代数正是实际问题离散化的数学基础.不仅如此,线性代数在训练学生的逻辑思维和推理能力、分析和解决实际问题的能力方面也起着重要的作用。因此,线性代数已成为理工、经济、工商管理等各专业大学生必修的重要数学基础课之一。 由于历史原因,我国线性代数的教学内容与课程体系受前苏联的影响很深。我国20世纪五六十年代的线性代数教材往往是高等代数教材的缩写本,理论性很强,难度较大,不太适合普通高校工科专业使用。 20世纪80年代初,同济大学编写了供普通高校工科专业使用的《线性代数》。该教材较好地把握了工科线性代数课程教学的基本要求,内容选择适当,难度适中,论述通俗易懂,例题与习题较为典型,一经出版
本书根据作者在复旦大学多年教学的讲义修改而成,内容包括群的基本知识、环和域的基本知识、多项式和有理函数、向量空间、群论中一些进一步的知识、域的扩张、有限域、Galois理论初步。本书配有相当数量的习题,难度变化大,适应多层次教学的需要。书后附有习题解答和提示,供读者参考。
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次曲面等。本书的编写原则是关注数学概念的起源,遵循数学理论的发展历程,强调理论的整体性和内在联系。书中配有大量编者精心挑选的习题和训练与提高题,既有助于强化读者对课程内容的理解,也为后续的代数学课程埋下了大量伏笔。
《不等式的秘密(第二卷):高级不等式》你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明,在此,你可以找到证明不等式的现代方法:整合变量法、平方分析法、反证法、归纳法和经典不等式的使用方法,正如你阅读过的《不等式的秘密(第二卷):高级不等式》第一卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能,我们希望,作者倾注在《不等式的秘密(第二卷):高级不等式》关于不等式方面的热情和汗水对你有用。
离散数学作为一门理论兼实际应用的综合性学科,既具有严谨的理论基础,又具备应用学科的特点,它是计算机科学和其他应用科学的基础理论课。本教材以《中国计算机科学与技术学科教程(2002)》中制定的关于“离散数学”的知识结构和内容体系编写。全书分为数理逻辑、集合与关系、代数系统与布尔代数4篇,共9章。内容包括:命题逻辑,一阶谓词逻辑,集合及其运算,二元关系,函数,代数结构,格与布尔代数,无向图和有向图,基本图类的算法等。
本书是教材《线性代数(第五版)》的配套用书,旨在帮助学生自学以及方便教材教学,本书的章节安排与教材相同,内容主要包括各节的学习要点、学习疑难点、典型例题解析及教材习题的解答。
李晓艳、魏晓娜、李永军编写的《线性代数与解析几何(普通高等教育十三五规划教材)》内容包括行列式、矩阵与线性方程组、几何向量与坐标、轨迹与方程、平面与直线、线性空间、特征值与特征向量、二次型与常见的二次曲面,同时附有多个应用教学案例,本书的特点是强调几何与代数的融合,强调从具体到抽象的思维方式,以及从问题出发引入概念与内容的教学模式。 本书可作为理工科和其他非数学类专业高等院校的教学用书,也可作为各大专院校或成人教育学院的学生教材,还可作为考研生、自学者和广大科技工作者的参考资料。
本书是理工科、技术学科、经济与管理等类学生学习《线性代数》课程的学习辅导书。全书共六章:矩阵与行列式,线性方程组,线性空间与线性变换、特征值与特征向量、Euclid空间与酉空间、二次型。本书重视基础知识的学习与基本技能的训练,强调教学内容与习题解析的同步衔接;注重整合知识,科学地指导学生进行解题的训练;书中还选择了许多综合性与灵活性问题,同时也对一些结论进行引申,引导学生独立思考和深入训练;在例题讲解中,适时穿插一些评注,起到画龙点睛的作用。本书还对全国和一些院校的硕士研究生入学考试试题适当地进行选择,有机地穿插在例题和习题之中。本书还在每小节之后都配置了一定量的习题,并附有答案或提示。 本书的深度和广度能适应大多数专业的线性代数知识的学习需要,可作为高等学校理科、工科、技术
本书采用学生易于接受的方式科学、系统地介绍了线性代数的行列式,线性方程组,矩阵,向量,向量空间,矩阵的特征值和特征向量,二次型等内容。强调适用性和通用性,兼顾先进性。本书起点低,坡度适中,简洁明白,适于自习。全书涵盖了考研的数学考试大纲有关线性代数的所有内容。习题按小节配置,量大题型多,书后附有答案。各章末有概要及小结,便于学生深人理解书中内容。
《生物序列数值化表征模型的矩阵分解方法及其应用》以生物序列的数值化表征模型所涉及的矩阵分解为核心,以序列的特征信息提取为主要目标,在非序列比对(Aignment-free)的框架下,分别提出了针对DNA/蛋白质序列、基因组序列等的若干个不同的特征信息抽取模型,并将所抽取的特征信息应用于序列的相似度分析。本书取材广泛,内容新颖,理论与应用紧密结合。书中所介绍的生物序列的建模方法、矩阵分解抽取其特征信息的研究策略,可供读者在解决实际问题时予以借鉴。 本书适合生物信息学、图像处理、信号处理等领域有关科研人员参考使用。