马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书可作为理工科院校对数学要求较高的非数学类专业本科生教材。通过这门课的学习,使学生系统地获得一元与多元微积分及其应用、向量代数与空间解析几何、无穷级数与常微分方程等方面的基本概念、基本理论、基本方法和运算技能,为学习后续课程和知识的自我更新奠定必要的数学基础;在传授知识的同时,培养学生比较熟练的运算能力、抽象思维和形象思维能力、逻辑推理能力、自主学习能力以及一定的数学建模能力,正确领会一些重要的数学思想方法,使学生受到用数学分析的基本概念、理论、方法解决几何、物理及其他实际问题的初步训练,以提高抽象概括问题的能力和应用数学知识分析解决实际问题的能力。
书作为数学分析课程的教材,共分上、中、下三册出版.下册主要介绍曲线积分与曲面积分、级数、广义积分与含参变量积分等基本内容.本书注重概念引入的自然性与理论推证的严密性.全书内容完整、安排恰当,并且表述清楚、简明,同时强调了习题配备的多样性与合理性.
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容涉及单变量微积分和级数。全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
《泛函分析索伯列夫空间和偏微分方程(英文版)》提出了一个连贯的、确切的、统一的方法将两个来自不同领域的元素——泛函分析和偏微分方程,结合在一起,旨在为具有良好实分析背景的学生提供帮助。通过详细地分析一维PDEs的简单案例,即ODEs,一个对初学者来说比较简单的方法,该书展示了从泛函分析到偏微分方程的平滑过渡。
《数值分析典型应用案例及理论分析》分为上、下两册,本书为下册。本书在上册基本理论编写基础上,就数值分析工程应用的案例进行了综合。与上册基本理论对应,本书案例分为8章,分别为递推法及其稳定性分析篇、函数计算 误差和相对误差分析篇、插值篇、拟合篇、线性方程组篇、非线性方程篇、数值积分篇、数值微分篇,内容涉及机械、液压、电力、电子、船舶、传热、力学、材料等工科学科。
陈晓江主编的《数值分析(研究生教材)》是作者在20多年讲授研究生数值分析课程的基础上编写而成的。全书共分11章,内容包括:绪论、插值法、拟合与逼近、数值积分与数值微分、线性方程组的直接解法、线性方程组的迭代解法、非线性方程求根的数值解法、常微分方程的数值解法、矩阵特征值问题的数值解法、智能计算初步、数值计算问题的MATIJAB实现。本书从实用角度出发,介绍科学与工程计算中常用的数值计算方法和理论,介绍各种方法的MATLAB实现,配有常用的、可运行的程序,配有大量的例题、习题,每章有小结,书后有习题答案。 《数值分析(研究生教材)》可作为理工科大学非数学专业的研究生或数学专业高年级本科生的教材,也可作为科技工作者的参考书。
吉米多维奇的《数学分析习题集》是一本 知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学 好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文 3版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
幂等分析是数学分析的一个新分支,代数结构也是来源于幂等分析。V.P.马斯洛夫、S.N.森博思奇著的《幂等分析(英文)》阐释了幂等分析相关的理论与研究成果,包括贝尔曼方程、有界函数、齐次算子等内容。本书的出版对于研究幂等函数的学者具有很大的帮助,并且对其他学科的学习和应用具有很大的帮助。本书适合高等院校师生及数学爱好者阅读和收藏。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。