本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》是г.м.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。 《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
本书汇集了 数学分析 方面的问题和反例500 多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。每一章分为三部分: *部分提纲挈领地给出了该章的基本概念和主要结果; 第二部分是问题,包括解法; 第三部分是反例。 本书所选的问题和反例比较典型,难度适中,构思新颖,解法精巧,富有启发性。书中不少问题和反例直接选自国内外有关学者所做的工作。本书对正确理解 数学分析 的基本概念,掌握 数学分析 的基本理论和技巧很有好处。 本书可供大学、大专数学系师生、数学工作者参考。
本教材分上、下两册,本书为下册.内容包括数项级数、函数项级数与函数列、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数、含参变量的积分、重积分、曲线积分、曲面积分.本书在章节安排上,由浅入深,逐步展开,编排合理;注重对基础知识的讲述与基本能力的训练;结合微积分的发展史与几何意义引进相关的概念与定理,具有启发性;注重新概念、新定理以及精彩定理证明的评注;证明详细,难点处理透彻,例题丰富,便于教学和读者自学.
非线性色散方程:局部和整体分析(影印版)
陈志华编著的《近代分析基础(第2版)》是一本综合性的分析教材,全书分为五章:分别为一般拓扑、线性泛函分析、sobolev空间、线性算子的谱分析及非线性分析简介,其中每章均独立成篇而相互又有关联。 《近代分析基础(第2版)》主要读者对象为数学专业高年级学生与硕士研究生,同时也可供其他理工科高年级学生、研究生、青年教师及相关工程技术人员学习参考之用。本书的取材与编写都充分考虑使本书能适于自学,为有兴趣于此的读者提供一本适于自学的读本。
本书是在第一版基础上修订而成的,在保持了第一版的简明扼要、论述清晰的内容体系和风格基础上,大幅度增加了泛函分析在各个领域中应用的例子. 全书共 4 章,包括泛函分析基础、局部凸空间、算子理论与算子代数初步、Banach 空间的微分学与拓扑度. 书中列举了大量泛函分析在复 分析、优化理论、偏微分方程、最优控制等领域的应用实例. 本书尽力以 一个适当的基础知识为起点,在整体内容上留给教师授课更多的自主空间, 留给学生学习更多的思考空间. 书中每章都给出了相应的参考书目供读者阅读,并精心选配了大量习题作为练习和正文的补充.
《数值与非数值分析VC++类库》是?VC++和BC++数值分析类库?的增补版.?VC++和BC++数值分析类库?包括矩阵?向量的操作运算和数值分析各种算法,读者几乎可以随心所欲地操作处理矩阵和向量,功能比MATLAB更丰富;数值分析功能涵盖了该学科的各分支.《数值与非数值分析VC++类库》除增补了矩阵向量操作和数值分析功能外,还增加了6项功能:字符串数学表达式解析;数据结构(链表?堆栈?队列)模板;信号基本分析工具箱;大整数?分数?分数矩阵?向量运算;复数?复数矩阵?向量运算;网络图操作与优化.《数值与非数值分析VC++类库》提供了动态库和静态库,静态库使得用户能编译生成完全独立的应用程序.
在椭圆柱坐标系中,由波动方程得到角向马蒂厄方程和径向马蒂厄方程,然后讨论角向马蒂厄方程和径向马蒂厄方程的解,即角向马蒂厄函数和径向马蒂厄函数,根据马蒂厄函数的性质,对马蒂厄函数进行分类,规范了角向马蒂厄函数和径向马蒂厄函数的函数符号。给出了马蒂厄函数用三角函数和贝塞尔函数级数展开的各种形式,进而得到它们的一阶导数的表达式,另外还对马蒂厄函数的积分形式进行讨论。讨论了马蒂厄函数的数值计算方法,编写出所有马蒂厄函数及其一阶导数的Fortran数值计算程序,通过数值计算,绘制出了一些典型的马蒂厄函数及其一阶导数的函数图像。后,给出马蒂厄函数的一些典型应用示例。
汪义瑞、石卫国编著的《数学分析简明教程(上 下)》分上、下两册,上册包含:实数集与函数、数 列极限、函数极限、函数连续性、导数与微分、微分 中值定理及其应用、不定积分、定积分、非正常积分 等九章;下册包含:数项级数、幂级数、傅里叶级数 、多元函数的极限和连续、多元函数的微分学、隐函 数定理及其应用、曲线积分、重积分、曲面积分等九 章.书中标有+的内容为选学内容。本教材的编写汇 集了各家教学成果和经验,把握了*内容,体现了 基本的数学理论知识,提供了灵活多样的数学思想 和思维方式、解题策略等。
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容主要涉及多变量微积分,全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calder n-Zygmund奇异积分算子的旋转方法。为体现调和分析与偏微分方程研究的紧密联系,还详细介绍了线性常系数偏微分方程的局部可解性与正则性、数学物理中的基本算子的基本解、非线性Schr dinger方程的散射理论、导数 Schr dinger方程的低正则性等应用。 本书是作者多年来培养研究生的内部讲义,特点是简洁而直奔主题,适合作为研究生的分析教材或年轻数学科研人员自学用书。