本书介绍了复变函数的一些基础知识,主要包括复数与复变函数、解析函数与保形变换、复积分、级数、残数与辐角原理、解析开拓、正规族与Riemann映射定理、调和函数。
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍
本书从实变函数论的发展简史出发,深入浅出地阐述了实变函数论的基本理论、基本问题和基本方法。本书共分为六章,内容包括: 实变函数论发展简史、集合与点集、可测集、可测函数、勒贝格积分理论和勒贝格意义下的微
实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................
。
泛函分析是大学数学课程设置中一门重要的专业课。这门专业课高度的概括性与抽象性使其成为数学专业较难学习的课程之一。本书试图以漫谈的方式将泛函分析的初步基础内容娓娓道来,尽可能将这一抽象的课程通俗清楚地表达出来,方便读者对这门课程的深入了解。 本书共4章,按照“空间上的映射与空间的结构相适应”的思想对教学内容进行编排,使泛函分析中的“空间”与“算子”两大内容有机结合。这4章的内容分别是:度量空间与连续映射、线性空间与线性算子、赋范线性空间与有界线性算子和Hilbert空间与共轭算子。本书将泛函分析史的部分知识以补充阅读的形式纳入全书,以增加学习兴趣和提升数学素养。 本书可供数学专业在校生、高等数学爱好者阅读,也可供相关文理院校师生参考或选为教材。
复变函数理论是分析学的一个重要组成部分,它的研究对象是复变数的函数,其历史悠久,内容丰富,理论十分 ;它还是分析学知识应用于实际问题的一种具体工具和桥梁,现已渗透到现代数学的许多分支。复变函数是数学和应用数学及相关专业 重要的基础课之一。本书内容包括:复数与复变函数、解析函数及其在平面场中的应用、复变函数的积分、复变函数项级数、留数及其应用、共形映射等相关内容,可供高等学校理工类专业、数学专业及数学爱好者参考使用。
B.Ya.莱文著的《整函数与下调和函数(英文)》内容来自在哈尔克斯大学举办的函数论研讨会参会者的研究论文。其中大部分论文是关于整函数和次调和函数的 研究成果。本书的出版将对函数论的学习和研究产生很大的影响,并且对于其他学科的学习具有促进作用。本书适合高等院校师生以及对函数论感兴趣的学者阅读收藏。
本书的主要目的是引入并研究被称为广义三角函数和双曲函数的各种主题。该方法和相关分析基本上是作者自己的研究成果,并且在许多情况下,这些内容与该主题之前的数学研究没有联系。一般来说,作者获得的结果是通过使用“严格的启发式”数学分析风格得出并讨论的。然而,尽管有些人可能认为这种研究方法是有限制的,但此过程允许我们遵循 有趣的结果。学习并理解本书内容需要读者已经掌握了基本平面几何、三角学和一年的微积分课程的相关知识。
本书为(不定方程及其应用》的中册。详细介绍了非线性不定方程(组)及其解法,其中包括因式分解法、配方法、奇偶分析法、判别式法等,还包括利用接近平方数的性质、二项式定理、费马小定理求解非线性不定方程(组)
陈孝国著的《可拓初等关联函数的扩展研究及应用》共7章:第1章,介绍了初等关联函数扩展研究的背景;第2章,介绍了基元、可拓集等知识;第3章,对初等关联函数进行了扩展研究;第4章,建立了基于三区间套下不确定型初等关联函数的可拓安全预警模型;第5章,建立了基于二区间套下确定型初等关联函数的露天矿边坡危险度可拓安全评价模型;第6章,利用可拓学理论建立了煤层自然危险性判别模型;第7章,建立了基于三区域套下不确定型初等关联函数的煤与瓦斯预警可拓模型。 本书适合高等学校管理类相关专业研究生和可拓学爱好者参考使用。
本书是一部全面介绍单变量和张量积样条函数理论的经典著作,为便于读者理解,书中呈现了样条理论在诸多领域的应用,其中包括近似理论,计算机辅助几何设计,曲线和曲面设计与拟合,图像处理,微分方程的数值解,强调了该理论在商业和生物科学中的应用也日益广泛。本书主要面向应用分析、数值分析、计算科学和工程领域的研究生和科学工作者,也可作为样条理论、近似理论和数值分析等应用数学专业课教材或教学参考书。
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。