《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书将复变函数、傅立叶变换、拉普拉斯变换、Z-变换有机地结合在一起,既保证教学质量,又压缩教学时数;重视能力培养,侧重应用;例题与习题丰富有利学生掌握所学的内本书将复变函数、傅立叶变换、拉普拉斯变换、Z-变换有机地结合在一起,既保证教学质量,又压缩教学时数;重视能力培养,侧重应用;例题与习题丰富有利学生掌握所学的内容。
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................
本书以轻松有趣、通俗易懂的漫画及故事的方式将抽象、复杂的傅里叶知识融会其中,让人们在看故事的过程中就能完成对数学相关知识的“扫盲”。这是一本实用性很强的图书,与我们传统的教科书比较起来,具有几大突出的特点,一漫画的形式更易于让人接受,二边读故事边学知识,轻松且易于记忆,三更能让读者明白并记住傅里叶解析问题在现实生活中的应用。 本书既可以作为人们日常生活中了解数学知识的读本,也可以作为数学及相关专业学生的参考用书,更可以是文科专业学生理性认识和学习数学知识的工具书及相关专业的参考用书。