本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
求非线性问题的解析近似解最著名的是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
求非线性问题的解析近似解最著名的方法是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
微分动力系统的研究始于上世纪60年代初,它主要研究随时间演变的动力系统的整体性质及其在扰动中的变化,其前身为常微分方程定性理论和动力系统理论,随着对非线性力学问题研究的深入和系统科学各分支的形成,微分动力系统越来越成为有关学者关注的新兴学科领域。本书是作者根据多年科研与教学的积累编写而成,内容包括:动力系统简介,双曲不动点,Smale马蹄、Anosov环面同构和螺线圈吸引子,双曲集,公理A系统与Omega稳定性定理。本书行文简洁、观点极具特色,书中将双曲不动点理论和双曲集理论从数学实质上完全统一起来,从而达到揭示表面差异之下的实质上的一致,是一本有很高学术价值的著作。本书可供研究微分动力系统方向的研究人员,以及应用数学及相关专业的教师和学生使用参考。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
微积分变魔术:一团面积变一条高,俗话“油饼变油条”,行话“二维变一维”。秘密含在一张表之中:一张画像加两行证明,一行决定、二行证毕。
本书主要介绍了数学分析中的内容,以构造数系和集合论开篇,逐渐深入到级数、函数等高等数学内容,举例详实,每部分内容后的习题与正文内容密切相关,有利于读者掌握所学的内容。本书在附录部分还介绍了数理逻辑基础
这是当今关于偏微分方程 (PDE) 的*权威教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。本书内容广泛,阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 新增非线性波动方程的一章, 超过 80 个新习题, 许多新的小节 大大扩充了参考文献。
本书为翻译引进书,原版为数学史经典,厘清了微积分概念从古至今的发展历程。作者从古代(主要为古希腊)的无穷等概念引入,系统介绍了这些原始概念以及一系列相关探索如何发展成为17世纪的微积分,并阐述了微积分在之后严格化的发展脉络。从“引论”开始,到“古代的概念”“中世纪的贡献”,到“一个世纪的期待”“牛顿和莱布尼茨”“犹豫不决的时期”,再到“严密的详细阐述”,直至 终给出“结论”。本书材料丰富、阐释清晰,既有引人入胜的历史叙述,又有对思想源流及其进化、完善的深刻分析,值得每一位数学教师认真研读。
《微积分》共7章,内容包括极限与连续、导数与微分、导数的应用、积分及其应用、常微分方程、多元函数微积分和无穷级数。《微积分》由浅入深,循序渐进,以“联系实际、深化概念、加强计算、注重应用、适度论证、重视创新、提高素质”为特色。书中各节均有习题,各章还有复习题,全书配有习题答案。通过《微积分》的学习,不仅可以掌握微积分的基本概念和基本理论,还可以培育理性思维品格和思辨能力,开发潜在能动性和创造力,从而提高数学素养。 《微积分》既可作为应用型本科院校理工类、经济管理类大学生的微积分教材,也可作为成人教育及自学考试的参考用书。
.
本书是与普通高等教育“十二五”规划教材《大学数学:微积分学基础》(中国科学技术大学出版社)配套的学习指导书,是为适应高等学校独立学院经管类专业高等数学课程教学要求而编写的.全书共9章,各章节内容与教材互相对应,包括:函数,极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用,多元函数及其微积分学,无穷级数,常微分方程.每节均由学习目标、知识要点、基础例题分析、基础作业题、提高题五部分组成. 本书可作为高校独立学院经管类专业学生学习高等数学课程的辅导用书,也可作为教授“高等数学”课程教师和广大自学者的参考用书.
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,是数学的一门基础学科,内容主要包括极限、微分学、积分学及其应用。本书的内容包括函数,导数及其应用,指数、自然对数函数及其应用,定积分,多元函数,三角函数,积分技术,微分方程,泰勒多项式和无穷级数,概率与微积分。全书图表清晰,版式美观,条理清楚,从概念介绍开始逐步深入,详细给出了解题步骤及微积分在生活中的应用,每节和每章的末尾都给出了大量的习题。本书可作为经济管理科学、社会科学和生命科学等非理工科专业学生一学期或两学期的应用微积分课程双语教材,也可作为相关技术人员的参考书。
本书主要介绍多元函数微积分学、无穷级数及常微分方程的主要内容,编写上具有如下特点: (1)注重概念的引入与讲解,尽可能通过较多的实际问题引入概念,力求清晰地阐述概念的实际背景,以增强学生学习的兴趣,同时也便于学生将抽象的概念同实际联系起来,使其 易理解并掌握概念。另外,本书还淡化理论推导过程,将复杂的理论证明作为附录,仅供学生自学参考。 (2)章节安排符合认知规律,注重从数学理论的发现、发展直至应用等多角度来讲授,让数学思想贯穿始终,使学生从总体上把握对数学思维、数学语言、数学方法的宏观认识,让学生体会到数学的美妙与严谨,培养学生的数学素养,同时有助于学生形成科学的方法论。 (3)每一章都有丰富的例题与习题。书中引用了大量数学在经济等各个方面应用的例子,融入数学建模的思想,既能 好地培