本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
这是当今关于偏微分方程 (PDE) 的*权威教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。本书内容广泛,阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 新增非线性波动方程的一章, 超过 80 个新习题, 许多新的小节 大大扩充了参考文献。
《微积分学导论》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今理工科数学教育的发展,并满足培养学生的要求。分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是下册,内容包括多变量函数的微分学、多变量函数的积分学、无穷级数、含参变量积分、傅里叶分析等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给学
本书由一线数学教师结合多年的教学实践编写而成.全书把微积分和相关经济学知识有机结合,内容的深度广度与经济类、管理类各专业微积分教学要求相符.全书分上、下两册,共12章.本书是上册,内容包括函数、极限、连续,导数与微分,中值定理与导数应用,不定积分,定积分及其应用.各节均配有一定量的习题,章末附有自测题,书后附有习题答案.
《非线性物理科学:微分方程群性质理论讲义》提供了确定和利用微分方程对称性的李群方法简明和清晰的介绍,并提供了在气体动力学和其他非线性模型中的大量应用,以及《非线性物理科学:微分方程群性质理论讲义》作者在这个经典领域的卓越贡献。《非线性物理科学:微分方程群性质理论讲义》中还包含在其他现代书籍中不曾涉及的一些非常有刚的材料,例如:Ovsyannikow教授发展的部分不变解理论,该理论提供了求解非线性微分方程和研究复杂数学模型强有力的工具。
本书是美国 数学家Peter Lax与康奈尔大学数学教授Maria Terrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积分,以及作为一元函数微积分基本定理的多元推广——格林定理、散度定理、斯托克斯定理.此外,作者在散度定理、斯托克斯定理这一章还补充了对守恒律的介绍,并专辟一章介绍了数学物理中典型的几类偏微分方程.跟Lax的其他教材风格一致,作者在本书中一如既往地贯彻了牛顿的主张“达到理解的 方式是通过少量好的例子”.Lax对数学之应用造诣非凡,他成功地将来自物理的诸多例子融入这两本微积分教材,将数学与物理融会贯通.本书末尾提供了部分习题的答案.
本书按照一般的微积分学教材的编排方式,系统地论述了基于MATLAB 语言编程的方法来实现微积分问题的求解。全书内容包括函数与序列的描述及图形绘制、极限问题的求解、导数与微分问题的求解、积分问题的求解、函数的逼近与级数求和、数值导数与数值积分等。此外,书中还概括性地介绍了积分变换、分数阶微积分等内容。 本书可以作为高等学校理工科各类专业的本科生与研究生学习计算机数学语言(MATLAB)的教材,也可以作为一般读者学习微积分学的辅助教材,帮助读者从另一个角度认识微积分学问题的求解方法,并可以作为查询微积分数学问题求解方法的工具书。
本书是教学辅导材料,提笔之初原认为编写初等的微积分书籍应不需花费太大气力,没想到笔者历时三年的犏撰才得以完成。从某种意义来讲,编写本书花费的精力不亚于本人十五年前撰写的本专著。编著者遵循有话则长无话短的原则,所以不同章节结构和篇幅不尽相同。为7便于阅读,本书分为两篇。篇是内容概述、归纳与解题方法综述,其中内容概述、归纳部分一般接常规教科书的章节形式和逻辑次序叙述教学内容,以知识点和例题为主,并编排对应的练习题;解题方法练述部分给出解题方法和典型、综合例题,有时按知识点陈述解题思路与方法,有时按习题类型归纳解题方法。第二篇为各章节练习题解答、阶段自测题及其解答和两份知识竞赛试卷及其解答,后是教学研讨。当然,习题解答主要是为学生编写的,而教学研讨编写目的是与同行进行深八的交流
《微积分入门(修订版)》为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出“严密”与“直观”的结合,重视数学中的“和谐”与“美感”,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
本书是高等院校信息与计算科学专业基础主干课程教材之一.为适应当前的教学需要,在内容的组织和叙述上做了新的有益的尝试.《BR》全书共2篇4个部分,介绍了数值解法中主要的两种方法——有限差分法和有限元法.依托经典的一维和二维问题,论述了算法的构造思想及其误差分析理论,具有系统性和实用性.本书还选配了适量的实习题和复习题,有利于读者巩固所掌握的有关理论和方法,为进一步的专题学习和研究打下一定的基础.
本书共10章。内容为函数、极限和连续,导数与微分,微分中值定理与导数应用,不定积分,定积分,空间解析几何,多元函数微分学,二重积分,无穷级数,微分方程与差分方程简介。各章后配有适量习题,书后附有各章习题参考答案。
张裕生编著的《微积分学习指导与作业设计》按照高等学校数学课程教学指导委员会制定的《高等数学课程教学基本要求》及硕士研究生入学考试大纲和专升本考试大纲编写。全书按同济大学《高等数学(第五版)》顺序编写,分为12章。各章主要分为教学要求、知识要点、答疑解惑、范例解析、基础作业题、综合作业题、自测题、参考答案与提示等8个模块。《微积分学习指导与作业设计》可作为本科生及各类专科生学期考试及考研、专升本考试复习的辅导教材,也可供教师与科技人员参考。
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书依据*委托北京大学和中国人民大学等有关院校拟订的《经济管理学科数学基础教学大纲》(草案)对一元和多元微积分(包括无穷级数和常微分方程,差分方程)的基本内容作了系统的论述,重点阐述了微积分的概念和方法在经济和管理中的应用,配有较多的例题和不同层次的习题,其中有些是历届经济管理类专业的研究生入学考试试题。书中概念的引入富有启发性,理论的展开自然而流畅。本书还以很少的篇幅介绍了微积分发展过程中的一些重要史实和有关数学家的生平。
拟微分算子理论是20世纪50年代开始发展的一套分析工具,在偏微分方程和微分几何等领域的许多问题的研究中都有着广泛应用。本书以精练的篇幅在章中讲述了这一理论的核心内容。 Nash-Moser定理是20世纪50年代末、60年代初的一个重要数学成果,直到今天,它仍然在微分几何、动力系统和非线性偏微分方程中有着重要的地位。它是本书第三章的论题。 这两套理论在数学文献中基本上都是分开单独处理的,而本书则在介绍这两个各自本身都有着非常重要意义的理论的同时,还阐明了它们是如何关联在一起的。通过大量的例子和习题,作者们给出了几乎所有结论的简洁而完整的证明。通过循序渐进地引进微局部分析、Littlewood-Paley理论、二进分析、仿微分算子及其在插值不等式中的应用、双曲方程(组)的能量不等式、隐函数定理等内容,作者们建立了上述两套理论之
《微分方程学习设计与建模应用导引(21世纪普通高等院校规划教材)》由化存才、黄炯、丁海华编著,以集成的方式,简明而综合地介绍了常微分方程和偏微分方程的学习、设计与建模应用指导的内容。全书共分为三篇,篇是“常微分方程”学习指导,内容包含常微分方程的基本概念、一阶微分方程的初等积分法、一阶方程解的存在性定理、高阶微分方程、线性微分方程组、非线性微分方程的基础;第二篇是“常微分方程”设计与建模应用指导,内容包含常微分方程的MATLAB程序设计与建模实验、常微分方程建模应用科技论文写作与范例;第三篇是“偏微分方程”学习指导,内容包含波动方程、热传导方程、调和方程、二阶线性偏微分方程的分类与总结,在附录中还介绍了编著者多年来在教学一线工作中所形成的部分教学与课件设计案例、综合测试与指导学生完成
The subject of this book is geometric integrators for differential equations with highly oscillatory solutions, including oscillation-preserving integrators, continuous-stage ERKN integrators, nonlinear stability and convergence analysis of ERKN integrators, functionally-fitted energy-preserving integrators, exponential collocation methods, volume-preserving exponential integrators, global error bounds of one-stage ERKN integrators for semilinear wave equations, linearly-fitted conservative/dissipative integrators, energy-preserving schemes for Klein–Gordon equations, Hermite–Birkhoff time integrators for Klein–Gordon equations, symplectic approximations for Klein–Gordon equations, continuous-stage modified leap-frog scheme for high-dimensional Hamiltonian wave equations, semi-analytical exponential RKN integrators,long-time momentum and actions behaviour of energy-preserving methods.The new geometric integrators are applied to problems with highly oscillatory solutions from sciences and engineering.