本书(上册)共10章。前5章讲授微分几何入门知识,第6章以此为工具剖析狭义相对论,第7~10章介绍广义相对论的基本内容。本书强调低起点(大学物理系本科2~3年级水平),力求化难为易,深入浅出,为降低难度采取了多种措施。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
本书的内容是关于楼(building)理论及其在几何和拓扑中的应用。楼作为一种组合和几何结构由Jacques Tits引入,作为理解任意域上保距还原线性代数群结构的一种方法,Tits因此项工作获得2008年Abel奖。楼理论是研究代数群及其表示的必要工具,在几个相当不同的领域中具有重要应用。本书的第一部分是作者专为国内学生学习楼理论准备的导读资料,其中特别注重利用例子说明问题,可读性很强;第二部分则综述了楼理论在几何与拓扑方面的应用,不仅总结了近些年楼理论研究的成就,还提出了未来的研究方向。本书是一本观点较高、极具学术价值的数学学习资料,可供我国高等院校代数及相关专业作为教学参考书使用。 Symmetry is an essential concept in mathematics, science and daily life, and an effective mathematical tool to describe symmetry is the notion of groups. For example, the symmetries of the regula
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
《自适应扩展等几何分析》对自适应扩展等几何分析的理论和应用进行了较为详尽的论述。《自适应扩展等几何分析》共8章,包括3部分内容。第1部分(第1~3章)系统地综述等几何分析、自适应等几何分析、扩展等几何分析和自适应扩展等几何分析理论的研究进展和主要应用,简述样条函数,介绍自适应等几何分析的基本理论;第2部分(第4、5章)详细地论述非均质问题和断裂问题的自适应扩展等几何分析;第3部分(第6~8章)介绍自适应扩展等几何分析在含缺陷功能梯度板的振动和屈*分析、含缺陷结构极限上限分析和孔洞问题安定上限分析中的应用。
本书主要介绍三维流形组合拓扑的基本理论和方法,内容包括正则曲面理论、连通和素分解、Heegaard分解、Haken流形、Seifert流形等传统内容,同时融入了对一些经典定理的现代处理方法,包括Heegaard分解稳定等价定理(Reidemeister-Singer定理)、Waldhausen的S3的Heegaard分解的唯一性定理、Lickorish-Wallace定理、Jaco加柄定理、Casson-Gordon的弱可约Heegaard分解与Haken流形的联系定理等,并尽量做到自相包容.为方便读者了解与三维流形组合拓扑相关的一些内容,在第2章介绍了曲面的拓扑分类,在最后几章介绍了纽结理论初步、辫子群理论初步和映射类群理论初步,供读者学习时参考.
本书系统阐述了同调理论的基本知识,自从庞加莱奠定了拓扑学的基础之后,同调理论就被认为是学习代数拓扑学的基本入门知识,因此,本书对于广大研究生学好同调理论并进而研究拓学都是一本极好的教材。 目次选择:(1)同调和上同调,计算的方法;(2)光滑函数的临界点和同调理论;(3)配边和光滑结构。
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。包括包括:紧Kahler流形上复hessian方程的研究、偏微分方程和黎曼几何、不变体系、几何可变体系、瞬变体系和刚片、自由度与辛几何、代数几何和物理中的超弦理论、二维非线性偏微分方程、Ricci流、Gromov-Witten不变量理论、Kaehler-Ricci流,Kaehler-Ricci孤立子唯一性,调和映射紧性,高余维平均曲率流等。
希尔格特所著的《李群结构和李群几何(英文版)》介绍了李群及其在流形上的作用,它受到广大数学家和学生的喜爱。 该书是在作者1991年写的教材Lie-Gruppen und Lie-Algebren 的基础上,介绍了李群的基本原理,书中增加了其过去近20年的教学和研究工作编著的,并且着重强调了微分几何在该领域中的作用。该书内容丰富, 书中大量的练习和选用的提示为学生提供了充分的学习指引。
本书是作者在点集拓扑方面几十年教学与研究的成果,内容丰富,层次分明。全书共3章,第1章介绍了拓扑空间与拓扑不变量,给出了相关的概念与定理,证明了重要的Urysohn引理、Tietze扩张定理与可度量化定理;第2章给出了各种构造新拓扑空间的方法,讨论了子拓扑空间的遗传性、有限拓扑积空间的有限可积性、拓扑积空间的可积性、商拓扑空间的可商性,并研究了映射空间Yx的点式收敛拓扑、一致收敛拓扑与紧致一开拓扑;第3章引入了拓扑空间的基本群的概念,给出了8种计算基本群的方法,特别论述了覆叠空间理论,它是基本群计算的强有力的工具,同时,由底空间的基本群的子群的共轭类给出了覆叠空间的分类定理,还在一定条件下证明了万有覆叠空间的存在、 性定理,进而,对正则覆叠空间证明了:自同构群A(E,B,p)与π1(B,bo)/p*(π1(E,e0))同构。 本书
本书是一本民国时期中学生用的英文原版平面几何课本。 书中介绍了中学几何的知识及内容,同时配以相应的习题与解答,以供读者 好的理解。 本书适合中学师生及数学爱好者参考阅读。
本书是《空间有向几何学》系列成果之三.在《平面有向几何学》系列研究和《空间有向几何学》(上、下册)等的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向体积法和有向体积定值法,对空间多边形和多面体重心线的有关问题进行深入、系统的研究,得到一系列的有关空间多边形和多面体重心线的有向度量定理,主要包括空间多边形和多面体重心线的共面共点定理、空间多边形和多面体顶点到重心线包络面有向距离公式、空间多边形和多面体顶点到重心线面有向距离公式,以及以上定理和公式的应用,从而揭示这些定理之间,这些定理与经典数学问题、数学定理之间的联系,较系统、深入地阐述了空间多边形和多面体重心线有向度量的基本理论、基本思想和基本方法.它对开拓数学的研究领域,揭示事物之间本质的联系,探索数学研究的新思想