本书将基础经济学、高频数据的经验基础和数学工具以及模型联系在一起,为读者在试图理解和设计成功的交易算法时面对的各种各样的问题,提供足够广阔的视野。本书分为三个部分。第一部分给出了交易市场的基本概念、理论以及经验事实。第1章介绍了电子交易市场、市场参与者和订单簿。第2章概述了金融微观结构市场模型。第3章和第4章对市场进行了实证和统计分析。第二部分也就是第5章介绍了交易算法分析相关的数学工具。第三部分深入研究算法交易策略的建模。第6-8章涉及最优执行策略,即代理商必须在预先指定的窗口上清算或收购大头寸,使用市价单或限价单进行持续交易。第9章涉及基于交易量日程的执行算法,为希望跟踪市场整体交易量的投资者制定战略。第10章展示了做市商如何在限价订单簿中选择限价单的发布位置。考虑了包括对库存风险的
基于项目学习的理论与实践,结合师范生的数学核心素养要求,以魔术游戏为载体,开发项目教学资源是有意义的。魔术游戏中的数学经多轮教学实践,使学生在真实的情境中经历观察、体验、探究、交流、感悟的过程,体会素养的发生、发展、深化与积淀。 该研究总结凝练了以初等数学知识、原理为主,以扑克牌、数表、骰子等为道具设计的典型魔术游戏项目;提出了魔术项目设计的六环节:魔术示范-魔术揭秘-魔术拓展-数学素养-实践思考-发展评价;编写了促进数学核心素养落地的魔术教学案例。 该著作的创新之处,首先,魔术、游戏与数学相结合形成研究的整体内容,基于读者的视觉和操作偏好,遵循教、学、做、创的思路编排内容,符合知、行、思的认知发展规律,凸显科学性;其次,魔术探究从形象到抽象、特殊到一般、猜想到推理、模型化到应用的
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
在当前面临局部性地缘事件频发、全球经济复苏和气候变化等多重挑战的背景下,准确预测原油价格变动显得尤为关键。《原油期货市场波动率预测模型介绍及应用》通过大量的实证研究和案例分析,以简明的语言呈现了复杂的波动率预测模型理论,并对现有流行的原油波动率预测模型进行了介绍,包括GARCH族模型、HAR-RV族模型、混频数据模型和机器学习模型等。
本书是根据*颁布的《理工科类大学物理实验课程教学基本要求》,结合大学物理实验仪器设备实际情况,在总结多年大学物理实验教学实践经验的基础上编写而成的。 全书共分4章,绪论部分介绍了物理实验的目的和任务、基本规则和要求,第1章介绍了测量误差理论、不确定度、实验数据处理方法等内容,第2章共9个基础实验,第3章共12个近代物理与综合应用性实验,第4章共9个研究及设计性实验,用于学生第二课堂的自主学习,附录中给出了常用的物理参数。书中所有思考题都配有参考答案,大部分实验项目有配套视频,方便在线学习。 本书可作为高等学校工科各专业的大学物理实验课程教材和参考书。
本书系统介绍了随机传染病动力学模型建立、分析以及数值分析,以期为传染病防控提供科学依据。全书共8章:第1章详细介绍了传染病动力学仓室建模方法和基本再生数的计算、随机模型构建及研究进展等;第2章给出了随机传染病模型研究需要的基础知识,包括概率空间、随机过程、It*微积分、随机微分方程及其稳定性、Markov半群、不变测度以及Fokker-Planck方程等;第3,4,5章分别研究了人口流动、干预策略、媒体报道等因素对随机传染病模型动力学行为的影响机制;第6章给出了猫免疫缺陷病毒模型的随机分析,特别是考虑了季节变化对疾病传播的影响;第7章研究了具有均值回归过程的随机传染病模型动力学行为;第8章给出了随机传染病动力学模型研究的基本算法及其相应的R程序代码。
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
本书是Fred等三个美国流行病学模型专家、数学家合著的Mathematical Models in Epidemiology一书的中译本。内容分流行病学的基本概念(包括各种类型的仓室模型、地方病模型、流行病模型、异质混合模型、媒介传播的疾病模型),特殊疾病的模型(包括结核病模型、艾滋病病毒/艾滋病(HIV/AIDS)模型、流感模型、埃博拉模型、疟疾模型、登革热模型与寨卡病毒模型),进一步概念(包括年龄结构和空间结构的疾病传播模型等)和展望未来四个部分,另加三个附录。
本书概述了数学物理微分方程模型中爆破解的数值诊断方法,着重研究如下两方面内容:①如何以可接受的精度获得接近爆破时间的近似数值解;②获得解的爆破时间的分析估计值,并以数值方式获得特定模型的爆破时间的特定值。本书基于Richardson对有效精度阶数的估计,研究了用于诊断数学物理方程爆破解的一类通用数值方法,并将该方法应用于各类常微分方程和偏微分方程。本书所有的例子都配有MatLab代码。其主要目的是为读者提供一个工具包,使他们能够高效地应用所提供的方法(包括软件包)来解决科学工作中出现的其他实际问题。
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
《数智背景下消费者对商品信息的获知-更新-使用行为研究》围绕消费者信息行为展开。数智背景下,消费者信息行为复杂多变,《数智背景下消费者对商品信息的获知-更新-使用行为研究》采用大数据分析技术和计量经济模型的理论分析方法,探索消费者通过视频广告获知商品信息的行为、推送干扰下的信息更新行为,以及线上跨平台信息对比后的信息使用行为。通过对这三个信息环节的讨论为商家的市场需求预测、市场开发以及营销策略实施提供理论依据和实践指导。
本书通过实例介绍了常用的初级数学建模方法,包括预测预报方法(回归分析、信息时间传递、马尔可夫链、灰色系统、神经网络预测)、关联分析方法(简单相关系数、偏相关系数、通径分析、典型相关分析、主成分分析、斯皮尔曼等级相关系数、独立性检验)、综合评价与决策方法(模糊综合评价、主成分综合评价、因子分析、层次分析法、灰色关联、方差分析)、分类与判别方法(模糊聚类分析、系统聚类、动态聚类、模糊模式识别、贝叶斯判别)以及数学规划方法等。全书注重数学建模思想介绍,重视数学软件MATLAB、LING在实际中的应用。全书案例丰富,通俗易懂,便于自学。
A.H.施利亚耶夫编著的《*金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“*金融数学全书”。 第二卷有关“理论”的四章是:“*金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住
本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函极值问题,分别用Ekeland变分原理和下降流线方法给出了著名的山路定理,应用山路定理和最小作用原理研究二阶半线性椭圆方程边值问题,同时包括与单调梯度映射相关的变分方法;最后第11章致力于变分方法在具体工程问题中的应用。
无
对于考研数学的整体复习而言, 阶段是学习知识点,第二阶段是学习解题套路,到了第三阶段,自然是要大量练习历年真题。本书精选了15年以内的真题,并且配有 详细且清晰的逻辑解题思路解析。 本书既非教材,也非教辅书,是一本十分“纯正”的自学用书。为了能让读者实现真正的自学目的,书中每个知识点和例题都做了 通俗易懂的讲解,以此来保证无论什么基础的读者都能够看懂本书。
本套教材是针对“本科经济管理类专业应用型人才培养模式”而编写的数学类课程教学用书,分《经济管理数学基础》和《经济管理数学技术》两册。 本书是《经济管理数学基础》,内容以微积分中的极限、导数、微分、积分等数学理论为主线,融合了一些常用的经济与管理学知识,具有叙述平缓通俗、抽象推导简单、应用案例丰富等特点,有很强的专业融合性和教学适用性。本书分为基础理论、一元函数微分学、一元函数积分学、多元函数微积分、数学实验五部分内容,共八章。本书可作为普通本科、民办本科、独立学院等本科院校经济管理类专业的数学基础课教材,也可作为高职高专院校学生及经济管理行业工作者的参考教程。
由于优化模型在各专业的研究领域中有着极其广泛的应用,本书以优化模型为主题讲述了几类较为基础且重要的数学模型,包括线性规划模型、非线性规划模型、整数规划模型、多目标规划模型、目标规划模型、动态规划模型、图与网络优化模型,共计七个章节。针对往年课程教学过程中学生普遍提出的困惑,即求解数学模型对于学生具有一定编程基础要求。因此,在各章节都以一定篇幅介绍三类常用求解优化模型的软件语言:LINGO、MATLAB以及Python。LINGO软件对于没有编程基础的学生也能够较快地掌握。MATLAB软件以及Python软件是大部分工科学生的基础工具,可在不增加学生负担学习成本上,着重介绍如何利用软件解决优化问题。