本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
在当前面临局部性地缘事件频发、全球经济复苏和气候变化等多重挑战的背景下,准确预测原油价格变动显得尤为关键。《原油期货市场波动率预测模型介绍及应用》通过大量的实证研究和案例分析,以简明的语言呈现了复杂的波动率预测模型理论,并对现有流行的原油波动率预测模型进行了介绍,包括GARCH族模型、HAR-RV族模型、混频数据模型和机器学习模型等。
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
《数智背景下消费者对商品信息的获知-更新-使用行为研究》围绕消费者信息行为展开。数智背景下,消费者信息行为复杂多变,《数智背景下消费者对商品信息的获知-更新-使用行为研究》采用大数据分析技术和计量经济模型的理论分析方法,探索消费者通过视频广告获知商品信息的行为、推送干扰下的信息更新行为,以及线上跨平台信息对比后的信息使用行为。通过对这三个信息环节的讨论为商家的市场需求预测、市场开发以及营销策略实施提供理论依据和实践指导。
无
本书全面介绍平面非光滑系统全局动力学分析的Me1nikov方法及应用。本书主要包括:平面非光滑系统同宿轨道和次谐轨道的Me1nikov方法,平面非光滑混合系统同宿轨道和异宿轨道的Me1nikov方法,平面双边刚性约束非线性碰撞系统全局动力学的Me1nikov方法和平面非光滑振子的混沌抑制等。本书发展的解析分析方法具有几何直观、Me1nikov函数形式简单、易于工程应用的特点。本书通过与光滑系统的Me1nikov方法的比较,展示了为突破系统非光滑而引入的新概念和摄动技术,通过多个实例验证了发展的Me1nikov方法在平面非光滑非自治系统全局动力学分析及混沌抑制中的有效性,极大地丰富了非光滑系统全局动力学的分析方法,可以引导读者尽快进入本领域的前沿。
本书从经典的稀疏表示模型入手,构建了反投影稀疏表示模型。首先从理论上探讨了该模型的可行性和稳定性;然后基于实际问题,结合先验信息对表示模型添加不同的正则项约束,进而采用合适的优化算法完成模型的快速求解,并分析了相应的收敛性,同时也构建了一套量化指标,用于客观地衡量稀疏表示模型的性能; 给出了在人脸识别和基因识别等方面的具体应用。 本书涉及的内容及讨论的难度和深度适合高等院校数学、信息科学、计算机科学与技术、控制科学与工程、电子科学与技术等领域的研究人员,可以为相关专业高年级本科生及研究生提供参考,同时可供模式识别、数学建模及优化求解相关领域的研究人员和工程技术人员参考。
本书包括空间坐标和向量、矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答。 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助。 本书适合中学生及数学爱好者参阅。
本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答。本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功
本书从经典的稀疏表示模型入手,构建了反投影稀疏表示模型。首先从理论上探讨了该模型的可行性和稳定性;然后基于实际问题,结合先验信息对表示模型添加不同的正则项约束,进而采用合适的优化算法完成模型的快速求解,并分析了相应的收敛性,同时也构建了一套量化指标,用于客观地衡量稀疏表示模型的性能; 给出了在人脸识别和基因识别等方面的具体应用。 本书涉及的内容及讨论的难度和深度适合高等院校数学、信息科学、计算机科学与技术、控制科学与工程、电子科学与技术等领域的研究人员,可以为相关专业高年级本科生及研究生提供参考,同时可供模式识别、数学建模及优化求解相关领域的研究人员和工程技术人员参考。
群体水平的传染病动力学研究己经有近百年的历史,其建模的基本假设是个体接触均匀混合,而实际个体相互接触是一个十分复杂的社会网络,因此,研究传染病的传播与演化动力学有必要考虑个体接触构成的社会网络。近十年,利用复杂网络来研究传染性疾病的传播己取得飞速发展,本书是将该方面近十年的研究成果加以系统化完成的,为读者提供网络上的传染病传播动力学的基础知识、前沿动态和研究方法。 本书主要介绍传染病动力学历史背景,复杂网络的基础知识,网络传染病动力学建模的基本思想和发展动态,不同网络结构下传染病动力学建模与分析技术,以及网络传染病随机动力学建模及分析,细胞自动机传染病动力学模型。在写作过程中,力求由浅入深,自成一体,注重建模思想与方法,注重网络拓扑结构,注重理论分析与应用。
本书全面介绍平面非光滑系统全局动力学分析的Me1nikov方法及应用。本书主要包括:平面非光滑系统同宿轨道和次谐轨道的Me1nikov方法,平面非光滑混合系统同宿轨道和异宿轨道的Me1nikov方法,平面双边刚性约束非线性碰撞系统全局动力学的Me1nikov方法和平面非光滑振子的混沌抑制等。本书发展的解析分析方法具有几何直观、Me1nikov函数形式简单、易于工程应用的特点。本书通过与光滑系统的Me1nikov方法的比较,展示了为突破系统非光滑而引入的新概念和摄动技术,通过多个实例验证了发展的Me1nikov方法在平面非光滑非自治系统全局动力学分析及混沌抑制中的有效性,极大地丰富了非光滑系统全局动力学的分析方法,可以引导读者尽快进入本领域的前沿。