希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
主要介绍点集拓扑和代数拓扑的基础知识。点集拓扑的内容包括度量空间、拓扑空间的基本概念,网收敛、分离性、可数性、度量化定理、紧性、连通性等;代数拓扑的内容包括基本群、覆盖空间、单纯复型与多面体、同调群等。另外还介绍了拓扑学中覆盖性质的近期成果。
《浙江省污染源自动监控系统运行与管理》共6章,系统介绍了污染源自动监控工作人员应知应会的基础知识要点,强调理论联系实际,有助于基本工作能力的提升。 《浙江省污染源自动监控系统运行与管理》以政策法规为带领,以标准规范为基础,从污染源自动监控系统的建设、运维、监管、应用等方面,对实际工作经验进行了总结凝练,结合诸多经典案例进行实例分析,实用性较强,将为今后污染源自动监控工作提供重要参考。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
《几何原本》是世界上最、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛者以及