本书是作者在多年来讲授“李群与李代数”课程讲义的基础上逐步修改而成的,是一本李群与李代数的入门教材,全书包括:微分流形的简单叙述、拓扑群的扼要理论、李群和李代数的基础知识、半单纯李代数的基本内容、李群和李代数表示理论介绍等,为适合读者阅读,本书在版基础上进行了修改、补充,并在第三、第四、第五章增补了适量的习题。本书可供从事数学研究的大学教师和研究生阅读,可作为硕士研究生的教材,也可供从事理论物理研究的专业人员参考。
A First Course in Nonmutative Rings, an outgrowth of the author' s lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson' s theory of the radical, representation theory of groups and algebras, prime and semiprime rings, primitive and semiprimitive rings, division rings, ordered rings, local and semilocal rings, perfect and semiperfect rings, and so forth. By aiming the level of writing at the novice rather than the connoisseur and by stressing the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
本书介绍和讨论了非晶合金塑性变形研究中的数学方法及应用问题。全书共七章,首先介绍非晶合金塑性动力学的研究背景和混沌初步理论;然后介绍相应的数学方法,如时间序列分析、自组织临界理论、分形、多重分形、波动分析法等,以及近几年我们应用这些理论在非晶合金塑性变形中的研究进展;另外,我们还给出一个室温下非晶合金塑性变形的数学模型及模型分析。本书内容属于材料数学研究领域,包含了多个学科(数学、材料、统计、物理、力学等领域)的交叉与融合,可为从事这些领域的研究工作者提供参考。本书可以作为相关科研人员的工具用书,也可作为研究生及高年级本科生教学用书。
微局部分析自20世纪60年代中创立以来在推动偏微分方程理论的发展上已有长足的进步。迄至70年代末已成定型,人称“70年代算法”。其后更向精密化发展;同时由线性领域向非线性领域发展。这显然是90年代大有希望的研究方向。本书的目的是就两个专门问题:非线性奇性分析以及次椭圆问题介绍这些发展,其中不少内容是作者本人的研究成果。本书的结构大体上是:第二、三、四章主题是非线性微局部分析,包括J.-M.Bony所创立的仿微分算子理论以及非线性奇性分析。后三章包括了非齐性Sobolev空间上的拟微分算子理论和它在次椭圆问题上的应用,以及高次微局部的理论等等。以上两部分都是当前正在活跃发展的研究领域。为了使读者能明了这些进展的由来并方便读者阅读,在章中系统而又概括地介绍了经典的微局部分析。
《黎曼几何(英文版)》是一部经典的《黎曼几何》教材,自1926年出版以来,广受欢迎,于1950,1952.,1960,1964,1993年重印出版,并于1997年再次重印出版且列入《princetonlandmarksinmethamatics》。本书作者简明的介绍了黎曼几何的关键概念,从张量分析开始,包括了黎曼曲率张量,christoffel符号和ricci张量,自此引入了度量的概念,并由此展开了测地线,平行位移,bianchi恒等式的讨论。书中内容还涉及正交标形,子空间的几何,平坦空间的子空间和运动群。模拟计算贯穿于书的始终。目次:张量分析;度量引入;正交标形;子空间的几何;平坦空间的子空间;运动群。读者对象:本书适用于数学和理论物理专业的学生,老师和专业人士。