本书是* 国家理科基地创建名牌课程项目 的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。 本书以编著者们多年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取上致力于对传统内容的更新、补充与层次化。本次修订对第1版的基本框架(指章、节和小节)和主要内容(指命题、例题、练习题和参考题)基本上不做改动,但对书中一些证明、解法和注释等做了多处改进;增加了练习题和参考题的层次性;对部分较难的参考题的提示进行了改进。 本书分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 本书可作为高等院校
本书为《陈阅增普通生物学》(第4版)的配套辅导书,共分为11章,每章由考点综述、名词术语、考研精粹、模考精练、习题详解五大部分组成。本书的主要特点是:结合权威教材,解析重点难点;内容充实,突出考试重点;例题种类全面,讲解清晰明了,方法性强。
本书根据理工科高等数学课程教学基本要求,配套同济大学编写的《高等数学》(第八版)教材编写,配套教材同步辅导使用。本书分上下册,共12章,并附有期中、期末同步测试卷和考研直通车真题卷与冲刺卷。 同步检测卷以章节为单位,全都按照研究生入学考试模式编排试卷,每章包含两套试卷,分为A、B卷。A卷主要考查基本知识,让读者掌握教材知识点并熟练运用,打牢基础;B卷难度稍大,编排了相当数量的考研真题,可以提升读者解题能力,提前感受考研难度。 试卷中的每一道习题均配有精解,有相当一部分习题给出了一题多解,让读者能够更好的开拓思路,举一反三。
本书按教材内容安排全书结构,各章均包括学习导引,知识要点及常考点,本节考研要求,题型、真题、方法,课后习题全解五部分内容,针对各章节习题给出详细解答,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽、简明易懂。 本书可作为高等院校 高等数学 课程的辅助教材,也可座位考研人员复习备考和教师备课命题的参考资料。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
本书是为了配合华东师范大学数学科学学院编写,高等教育出版社出版的《数学分析(第五版 上册)》一书而编写的配套辅导书。 本书共有11章,分别介绍实数集与函数、数列极限、函数极限、函数的连续性、导数与微分、微分中值定理及其应用、实数的完备性、不定积分、定积分、定积分的应用、反常积分等内容。本书按教材内容安排全书结构,各章基本都包括本章导航、各个击破、课后习题全解、走进考研四部分内容;对各章的重点、难点做了较深刻的分析,针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题。各章还附有典型例题与解题技巧,以及历年考研真题评析。 本书可作为数学和其他相关专业学生学习 数学分析 课程的辅导材料和复习参考用书,也可作为数学专业学生考
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书按教材内容安排全书结构,各章均包括学习导引,知识要点及常考点,本节考研要求,题型、真题、方法,课后习题全解五部分内容。全书按教材内容,针对各章节习题给出详细解答,思路清晰,逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽,简明易懂。 本书可作为高等院校学生学习《高等数学》(第七版 上册)课程的辅导教材,也可作为考研人员复习备考的辅导教材,同时可供教师备课命题作为参考资料。
本书深入剖析偏微分方程教与学中的重难点。这些重难点既涉及基本概念, 也包括基本理论与基本解法,具体分为如下三大模块:一基本概念模块,二基本解法模块,三基本理论模块。 一、基本概念模块:1. 偏微分方程的基本概念;2. 弦振动方程的导出;3. 两个自变量的二阶拟线性偏微分方程的特征;4. 两个自变量的二阶线性偏微分方程的分类;5. 依赖区间、决定区域、影响区域和波的传播速度。 二、基本解法模块.(一)Cauchy问题 (双曲型方程、抛物型方程) 的基本解法: 6. 双曲型方程的特征线法-达朗贝尔解法;7. 球面平均法与三维波动方程的求解;8. 降维法与二维波动方程的求解;9. 应用Fouri
本书根据理工科高等数学课程教学基本要求,配套同济大学编写的《高等数学》(第八版)教材编写,配套教材同步辅导使用。本书分上下册,共12章,并附有期中、期末同步测试卷和考研直通车真题卷与冲刺卷。 同步检测卷以章节为单位,全都按照研究生入学考试模式编排试卷,每章包含两套试卷,分为A、B卷。A卷主要考查基本知识,让读者掌握教材知识点并熟练运用,打牢基础;B卷难度稍大,编排了相当数量的考研真题,可以提升读者解题能力,提前感受考研难度。 试卷中的每一道习题均配有精解,有相当一部分习题给出了一题多解,让读者能够更好的开拓思路,举一反三。