个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
飞毛腿为什么追不上乌龟? 无穷世界里部分大于整体吗? 理发师到底给不给自己剪头发呢? 2为什么不是有理数? 从一个个问题中,科学家开始探索奇妙的数学世界 用于测量金字塔的高度,预测彗星轨迹,探索大脑结构、走进量子世界 数学,正是物理、化学、生物、天文等学科的基础,人类的每一次重大进步的背后都离不开数学。 本书通过讲述影响世界的40个经典数学问题,多角度展现了人类在探索过程中闪耀的智慧光芒,创造性梳理了数学的发展脉络,帮你发现一个妙趣横生、精彩绝伦的数学世界,让你学会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界。
数学作为重要的基础学科,是我们面向未来的重要工具和能力。但问题是,我们如何摆脱数学学习的枯燥甚至是畏难情绪,提升数学教育的质量,真正地享受数学,热爱数学,并愿意钻研数学。 《数学的力量》以诚挚的语言告诉我们,学好数学实际上是人类的天性,只是很多人都被埋没了。数学中蕴含着意义、美、探索、自由、真理、奋斗等各种优秀的品格,和我们个体的内在追求是高度契合的。我们每个人实际上都可以发现数学之美,感受数学之乐,重要的是通过正确的方式去唤醒它们。 这是一本契合时代的动人之作,希望每个人都可以从中看到不一样的数学,转变数学认知,重塑数学思维。
21世纪的今天,我们生活的方方面面无时无刻不在被算法影响和塑造。它们帮我们选择最佳的行车路线,向我们推荐我们可能购买的商品,为我们识别语音和图像,甚至给单身人士匹配婚恋对象。越发强大的算法也在不断突破极限,无论是打败围棋世界冠军柯洁,借助大语言模型与人类会话,还是在200秒内完成超级计算机1万年才能完成的计算。 然而,算法并非新近才开始影响人类社会,人类受益于算法已经有数千年的历史。在《算法简史:从美索不达米亚到人工智能时代》中,以算法发展过程中的关键人物和经典算法为主线,作者克里斯 布利克利绘出了一幅近4 000年的算法发展简史:从镌刻在古巴比伦泥板上求2的平方根的算法,到刘徽和祖冲之父子对圆周率的精确计算;从查尔斯 巴贝奇和艾达 洛芙莱斯试图建造的机械数字通用计算机,到艾伦 图灵对算法的正式
我们在生活在一个充满不确定性的世界,从买彩票的运气到股市的波动,从高尔夫球进洞的曲线到明天究竟会不会下雨,如果一本畅销书或一部卖座的电影可以被预测,那么《哈利 波特》为什么会被拒稿9次?如果成功不可以被复制,那么很多连锁企业又是如何获得成功的? 《醉汉的脚步》来自一个描述随机运动的数学术语,当分子飞越空间并不断撞击其他分子或被其他分子撞击时,它走过的路径就如 醉汉的脚步 一样。我们可以用分子的路径来比拟我们的生活,或是我们从大学到工作、从单身到建立家庭、打高尔夫球时从进第1洞到进第18洞之间的过程。作者列纳德 蒙洛迪诺在为我们揭示偶然性的真实本性以及导致我们误判周遭世界的那些心理错觉的同时,也为我们提供一种看待生活的全新视角,帮助我们更智慧、深刻地认识世界,理解生活。
数学是什么?数学研究到底是怎么做的?三个小朋友希望平分一个蛋糕和数学究竟有什么关系?为了揭开数学的神秘面纱,破除 数学与生活无关 的迷思,带领大家领略逻辑与数学之美,作者郑乐隽将数学探索巧妙地融入了众多生活化而富有趣味性的例子,比如,为什么甜甜圈和咖啡杯可以被视为同一种形状?为什么按照食谱制作出一个美味的蛋糕证明了数学很容易,而生活很难?当然,这本书不仅仅关乎数学与烹饪,我们还将参加纽约市和芝加哥市的马拉松比赛,近距离参观圣保罗大教堂的三重顶结构,为灰姑娘找到她的水晶鞋,甚至弄清楚为什么我们更倾向于认为西红柿是一种蔬菜而不是一种水果。在此基础之上,我们还将进一步探讨范畴论 数学的数学 。超越具体的数字和公式,我们将借助范畴论继续探索我们是如何知道、理解和相信所有事实的。很多人都
《迷人的逻辑题》介绍了125道经典的逻辑趣味题、数学题和脑筋急转弯。很多都是你似曾相识的题目,比如狼、羊、卷心菜过河问题,数独问题,以及微软笔试中的渡河问题。 这些题目本身并不高深。它们像诗一样,优雅而简洁,需要你用严密的逻辑推理以及灵光一现的反常识灵感才能解开。有些的谜题不需要你有任何方面的知识,只需要你有创造力、技巧以及清晰的思维能力。 解开这些题目,你不但可以享受解题带来的乐趣,还可以从中获得启发,解决生活中的难题。 赶快一试身手吧!看看你能解出多少道题?
数学是人类智慧的结晶,是科学实践中的强有力工具。它与我们的生活息息相关,同时伴随着人类文明的发展而不断进化。21世纪的数学已经演变成一种抽象的艺术形式,具有其独特的内在审美价值。本书精选了全球十几位杰出科学家的研究成果,从纯数学理论的研究前沿,到数学与生命、物理及人类文化的关系,再到数学所存在的固有局限性,展示了现当代的伟大数学成就。本书既适合学生拓展视野、增加学习兴趣,又适合教师作为教学参考书。广大的数学爱好者也能从中获益。
《欧几里得几何原本》是古希腊数学家欧几里得所著的一部数学著作。把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。
这是一本充满欢乐的数学书。作者本·奥尔林在做数学老师的十几年里发现,大多数学校都把数学这门课教得乏味透顶,他自己开始也是这样。有一天他在解释一道题时画了一条滑稽的小狗,惹得学生们哄堂大笑,这让他豁然开朗:孩子们看到一向聪明、专业的老师画的画这么“烂”,突然觉得数学不再高高在上,而是变得可亲起来。从此,他的数学课充满了欢声笑语,学生有了飞跃的进步,并且获得了数学学习的秘籍——理解。这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的“烂插画”、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死……从烤蛋糕、看球赛、玩桌游到买彩票、考试
中学数学竞赛的宗旨是激发学生学习兴趣,训练思维,发展智力,培养 苗子。 我们依照上述宗旨,立足基础,面向普及,编写了《新编高中数学奥赛指导》一书。本书共有38讲和16次的赛场练兵。每讲由赛点直击、赛题解析、巩固练习三部分组成。内容的编写侧重于基本知识、基本思想方法与基本技巧的灵活运用。精心选择例题,并努力做到推陈出新,例题编排由易到难,由浅入深,前四分之一的例题难度相当于高考中档以上试题、全国自主招生试题和全国高中数学联赛中档以下试题,后四分之一的例题难度相当于全国高中数学联赛中档以上试题或中国数学奥林匹克竞赛(CMO)及 数学奥林匹克竞赛(IMO)试题。 “巩固练习”中的题目与每讲配套,每一次“赛场练兵”是对前几讲的一次真实训练。这两部分的详细解答过程请参考《新编高中数学奥赛实用题
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学之美的过程。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。《数学女孩6:庞加莱猜想》以百年数学难题“庞加莱猜想”为主题,从柯斯堡七桥问题入手,详细讲解了拓扑学、非欧几何、流形、微分方程、高斯 妙定理和傅里叶展开式等数学知识,还原了庞加莱猜想的探索历程,带领读者一同追寻“宇宙的形状”。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。请翻开本书,一同加入主人公们的探索之旅吧。
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克·牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲·热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米·诺特被阿尔伯特·爱因斯坦描述为数学 重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟·拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其
贝尔是美国重要的数学史家。他的这部《数学大师》是介绍数学史和数学艺术的经典著作。本书深入浅出地介绍了数学发展的历程,从古希腊的几何学,历经牛顿的微积分学,再到概率论、符号逻辑等等,都有详略适宜的叙述。同时,本书又告诉我们,数学家并不是一群躲在象牙塔内冥思苦想、不食人间烟火的怪人,他们除了智力过人以外,也和我们一样,有着世俗的欲望和追求,经历着常人的喜悦和苦恼。全书以历史上30多位数学大师的生平为主线,分章讲述了他们的杰出贡献、性情喜好和生活轶事。 《数学大师》也是一部思想史,追述了从古代到20世纪数学思想的伟大发展。它以清晰的笔触、幽默的手法,对复杂的数学思想作了巧妙的分析和论述。无论是数学专业人士,还是一般读者,都可以从本书中获得许多有关数学和数学发展史的知识,对那些久闻其名
《数学圈3》是《数学圈丛书》之一。《数学圈3》分告别数学圈和回归数学圈两大部分。其中告别数学圈主要介绍了从惟一的学位论文到卡洛尔的壁炉,从柏拉图到阿丁,从作者的笑话到一道难题以及从叔本华谈数学到标点问题;而回归数学圈主要介绍了从牛顿的床到通用语言,从概率到蟋蟀,从不可能的几何到归纳问题以及从光学错觉到因子分解。通过这些内容,可以改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活