Transformer正在颠覆AI领域。市面上有这么平台和Transformer模型,哪些最符合你的需求? 将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。本书将引导你使用Hugging Face从头开始预训练一个RoBERTa模型,包括构建数据集、定义数据整理器以及训练模型等。 《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》分步展示如何微调GPT-3等预训练模型。研究机器翻译、语音转文本、文本转语音、问答等NLP任务,并介绍解决NLP难题的技术,甚至帮助你应对假新闻焦虑(详见第13章)。 从书中可了解到,诸如OpenAI的高级平台将Transformer扩展到语言领域、计算机视觉领域,并允许使用DALL-E 2、ChatGPT和GPT-4生成代码。通过本书,你将了解到Transformer的工作原理以及如何实施Transformer来决NLP问题。 主要内容 ? 了解用于解决复杂语言问题的新技术
本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架 YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。
ChatGPT 是目前市场上最为优秀的 AI 工具之一,它以强大的信息整合、知识链接、编程和语言理解等能力惊艳了全球,被广泛用于各行各业,以提高生产力。那么如此强大的 AI 工具该怎样使用呢? 《ChatGPT 实操应用大全(全视频 彩色版)》应运而生,这是一本关于 ChatGPT 全场景使用秘籍,为读者呈现 ChatGPT的 150种不同的使用方法和技巧,带读者深度解锁 ChatGPT的功能,释放出无限的创造力。它能够帮助用户轻松解决各种实际问题,极大地提高工作效率和生产力。不论是短视频内容创作、数据分析、日常办公、论文写作、金融投资,还是翻译、写代码等任务,本书都能够满足用户的需求。如果想要更好地利用 ChatGPT 功能,就阅读本书。本书主要涵盖 ChatGPT 的注册与登录、基本功能的使用、提示词用法、150 种应用场景、参数指令与 API 开发以及ChatGPT插件等内容,内容通
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
当智能工具成为我们日常生活不可或缺的一部分时,我们很容易忘记人类是如何迈入数字时代并一路走来的。然而,在历史上的一段时期内,聪明的人类却在创建由简单的0和1组成的字符串时遇到了众多极大的困难。《数字革命史》正是向这段历史致敬,没有这段历程,就没有我们今日智能手机、社交网络、互联网服务和人工智能的普及。这本书讲述了人类曾面临的最严峻的挑战,并呈现了现代新技术世界的奥秘。该书围绕五个主要章节带领读者畅游数字革命史之路,探究以惊人速度相继出现的数字技术并启发今天人工智能的新挑战。
识别关系是机器学习的基础。通过识别和分析数据中的关系,以图为核心的算法(如K-邻近或PageRank)显著提高了机器学习应用的效率。基于图的机器学习技术以全新方式为社交网络、欺诈检测、自然语言处理和推荐系统等领域的机器学习提供了强有力的支持。 《动手学图机器学习》是行业类的权威书籍,旨在倾授如何利用面向图的机器学习算法和工具,充分挖掘结构化和非结构化数据集中的自然关系,读者可以从中吸收图架构和图设计实践的精髓,并学会从容避开常见的陷阱。作者Alessandro Negro通过真实的应用示例,将GraphML(一种图建模语言)概念与实际任务完美联系起来,使读者能够更好地理解图技术在机器学习中的价值,并熟练应用该技术。 ● 大数据平台中的图 ● 推荐、自然语言处理、欺诈检测 ● 图算法 ● 与Neo4j图数据库协作
本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)
工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考
这是一本关于Elasticsearch技术实战的教程,全面覆盖了Elastic Stack技术体系知识,旨在帮助读者深入了解Elasticsearch的核心技术和应用场景,同时掌握分布式搜索与分析引擎的设计思想和实现原理。
一本将 AI 绘画讲透的探秘指南,通过丰富的实践案例操作,通俗易懂地讲述 AI 绘画的生成步骤,生动展现了 AI 绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI 绘画的诞生,引发了奇点降临,点亮了 AGI(通用人工智能),并涉及 Prompt、风格、技术细节、多模态交互、AIGC 等一系列详细讲解。让您轻松掌握生图技巧,创造出独特的艺术作品,书写属于自己的艺术时代。
《Python机器学习项目实战》引领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。本书完全满足这三点! 本书展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关键概念。在学习本书的过程中,读者将会完成一些引人入胜的项目,比如使用线性回归预测汽车价格,部署客户流失预测服务等。读者将**算法,学习在无服务器系统上部署机器学习应用,以及使用Kubernetes和Kubeflow服务模型等重要技术。大家埋头苦学,亲自动手,享受掌握机器学习技能的乐趣! 主要内容 ●收集和清理训练模型的数据 ●使用流行的Python工具,包括NumPy、Scikit-Learn和TensorFlow ●将机器学习模型部署到生产环境中 阅读门槛 读者
本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于 回归事物本质,规律性、系统性地思考问题 理论为实践服务并且反过来充实理论,为更多人服务 的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。 全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的 到底是什么,为什么要这样做 的通俗理解。尽可能通过对应到日常生活中的现象来进行讲述。第2部分是机器学习模型、方法及本质,这一部分针对机器学习的方法论及具体的处理过程进行阐述。涉及数据准备、异常值的检测和处理、特征的处理、典型模型的介绍、代价函数、激活函数及模型性能评价等,是本书的核心内容。我们学习知识的主要目的是解决问题,特
《机器学习实战使用R、tidyverse和mlr》将使用RStudio和非常棒的mlr程序包开启你的机器学习之旅。这本实用指南简化了理论,避免了不必要的复杂统计和数学知识,所有核心的机器学习技术都通过图形和易于掌握的示例进行清晰的解释。每一章的内容都十分引人入胜,你将掌握如何把新的算法付诸实践,以解决各种预测分析问题,包括泰坦尼克沉船事件中不同乘客的幸存概率、垃圾邮件过滤、毒酒事件调查等。 主要内容 使用tidyverse程序包处理和绘制数据 监督机器学习和非监督机器学习技术 分类、回归、降维和聚类算法 统计学基础
本书以实际操作为导向,用ChatGPT Midjourney Stable Diffusion来充分释放读者的想象力,展现视觉创意的无限可能性。本书详细讲解了基于ChatGPT、Midjourney、Stable Diffusion进行AI绘画的完整学习路线,包括提示词的提问、绘画技巧、图片生成、提示词编写、参数描述、模型训练等,同时搭配了丰富的实际操作案例。整本书内容全面、详尽且深入浅出,实用性很强。
本书共12章:第1章介绍机器学习的基本概念和理论,并介绍用于机器学习的R软件环境的准备;第2章介绍如何应用R来管理数据,进行数据的探索分析和数据可视化;第3~9章介绍典型的机器学习算法,包括k近邻分类算法、朴素贝叶斯算法、决策树和规则树、回归预测、黑盒算法 神经网络和支持向量机、关联分析、k均值聚类,并给出大量的实际案例和详细的分析步骤,例如乳腺癌的判断、垃圾短信的过滤、贷款违约的预测、毒蘑菇的判别、医疗费用的预测、建筑用混凝土强度的预测、光学字符的识别、超市购物篮关联分析以及市场细分等;第10章介绍模型性能评价的原理和方法;第11章给出提高模型性能的几种常用方法;第12章讨论用R进行机器学习时可能遇到的一些高级专题,如特殊形式的数据、大数据集的处理、并行计算和GPU计算等技术。
本书以介绍机器学习中的优化算法为主要内容,以当前机器学习会议的热门话题加速算法为主线,涵盖机器学习中常用的凸优化、非凸优化,以及随机优化和分布式优化。
本书详实介绍了数据挖掘与机器学习相关的各种内容,包括数据矩阵、图数据、核方法、项集挖掘、聚类、贝叶斯分类器、决策树、支持向量机、线性回归、逻辑回归、神经网络、深度学习等,介绍其相关概念和基础算法,并在每章的末尾配有相关练习。第二版新增了几个关于回归的章节,包括神经网络和深度学习的内容。
本书首先介绍了在具有完整位置和速度信息的全局坐标系中导航和运动规划的模型和算法。第二部分研究了机器人在势场中的运动,势场是由机器人的期望和知识的环境状态定义的。第三部分介绍了机器人在未知环境中的运动以及利用感测信息进行环境映射的相应任务。第四部分从二维和三维两个方面研究了多机器人系统和群体动力学。
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。