《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
从古至今,密码激发了设计者的智慧和破解者的聪明才智。密码学,也就是发送秘密信息的学问,背后的数学是怎样的?约书亚 霍尔登同时聚焦于编码和解码,通过解读历简单又为知名的凯撒密码,阐述了大部分为人熟知的古代和现代密码背后关键的数学理念。本书还探讨了多字母替换密码、换位密码(其中一种是由斯巴达人发明的)、序列密码、涉及指数运算的密码以及公钥密码等。 《密码的数学》通过大量历史趣闻和真实案例,揭示了在信息编码的学问中,数学是怎样随风潜入夜、润物细无声的。 要读懂并享受本书,只需要基本的数学知识,不超过高中代数的水平。 关于本书材料的进展,以及密码学在历史上的发现,可以在下列博客中查看,请访问网址获取更多细节: http://press.princeton.edu/titles/10826.html
近代 数理逻辑学家王浩在数学、逻辑学、计算机科学领域有着超高天赋和开拓性成果,他一生痴迷于哲学研究,是对世界哲学作出过深刻贡献的华裔学者。本书是王浩的代表作,是其正面集中阐释自己哲学思想的作品。循着从柏拉图到哥德尔的“数学-哲学家”传统,王浩在书中 对实质事实主义一般立场进行了长篇阐发;广泛、深入地讨论了数学哲学的诸议题;探索了心灵与机器、数学与计算机、知识与生活等话题;还重点考察了逻辑和数学领域的一些基本概念。此次中译本 出版,由专业译者精心翻译,以助读者 好地理解王浩的数学哲学思想。
本书是在作者十余年讲授数学分析、考研辅导、数学竞赛材料的基础上多次修订而成的.所选题目大部分是重点高校硕士研究生入学考试题目和重点高校教材中的经典题目,部分题目是全国大学生数学竞赛试题.本书采用分类讲解的方式,在讲解题目时一般采用分析?解答?备注的方式,使读者举一反三,触类旁通,有些题目给出多种解答方法以拓宽读者的思维.本书内容包括极限论、函数的连续性、一元函数微分学、一元函数积分学、级数论、多元函数微分学、含参变量积分、多元函数积分学.
本书前5章讲述三角范畴和导出范畴的基本理论;第6~11章讨论了Frobenius范畴的稳定范畴、Gorenstein同调代数、奇点范畴、Auslander-Reiten三角与Serre对偶、三角范畴的t-结构与粘合等专题。附录提供了全书所要用到的范畴论方面的概念和结论。每章均配有习题并包含提示。本书强调三角范畴与Abel范畴之间的比较和转化研究。
1.至今还没有一个同样无所不包的统一概念来代替牛顿关于宇宙的统一概念,要是没有牛顿明晰的体系,我们到现在为止所得到的收获,将是不可想象的。 2.牛顿由于发现了万有引力定律而创立了天文学,由于进行了光的分解而创立了科学的光学,由于创立了二项式定律和无限理论而创立了科学的数学,由于认识了力的本质而创立了科学的力学。 3.牛顿在其科学才华处于时期所撰,绘就经典力学世界图景的旷世巨典,是他 个人智慧的伟大结晶 。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至人类文明史的不朽巨著。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
本译著 (书) 含有阿尔??卡西的两部代表性数学名著 《算术之钥》和 《圆周论》。 其中 《算术之钥》一书成书于 1427 年 3 月,共 5 卷37章,涉及算数学、代数学、几何学、三角函数、数论、天文学、 物理学、测量学、建筑学和法律学 (遗产分配问题) 等内容,被称为当时的百科《算数之钥》。 《圆周论》 一书成书于 1424 年,包括十部内容和阿尔??卡西本人补充的小结,主要是计算圆周率 π 和 sin1°的近似值。阅读《算数之钥》的学者会发现,阿尔.卡西不但具有惊人的计算能力,而且在某些领域取得了突破性的成就,大大超越了其前辈和同时代的其他学者。
《几何原本》是古希腊数学家欧几里得的一部不朽著作,集古希腊数学的成果和精神于一书。它既是数学巨著,又极富哲学精神,并次完成了人类对空间的认识。 《几何原本》自问世之日起,在长达两千多年的时间里,经历多次翻译和修订,自1842年个印刷本出版,至今已有一千多种不同的版本,流传甚广。 《几何原本》收录了原著13卷全部内容,包括5个公设,5个公理,23条定义和467个命题,即先提出公设、公理和定义,再由简到繁予以证明,并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种思维范式的确立,对人类知识发展和形成的影响尤为巨大。
本书介绍数理逻辑的基础知识,包括逻辑演算的基本内容。这些内容构成数理逻辑各个分支(模型论、证明论和构造性数学、递归论、集合论)的共同的基础。《BR》本书共六部分,分上、下两册。上册包括绪论、第一章和第二章。绪论对数理逻辑的性质,逻辑演算的大概内容。以及阅读以后各章所需要的预备知识作了简要的说明。第一章构造命题逻辑和一阶逻辑的形式系统,介绍演绎逻辑的基本规则。第二章研究逻辑演算的重要系统特征。
本书首先介绍空间Lp、Hilbert空间L2、Fourier变换和广义函数等基本内容,然后着重介绍小波的数学理论。第2章介绍空间L2上的基,包括Gabor基、局部正余弦基和小波基;第3章建立空间L2中元素成为小波的充要条件;第4章和第5章讨论构造小波的通用方法——多尺度分析;第6章介绍Daubechies小波的构造及Daubechies小波的性质;第7章和第8章分别介绍小波框架和Gabor框架的基本内容和**研究结果;*后一章介绍作者与合作者在国际上首次建立的局部域上小波分析和Gabor分析的基本理论。
本书内容主要包括点集偏差的基本概念和主要性质、低偏差点集的构造、偏差上界和下界估计的常用方法、点集偏差的精确计算公式、点集离差的基本结果,以及点集偏差和离差在拟Monte Carlo方法中的一些应用,如具有数论网点的多维求积公式的构造、多维数值积分的格法则、函数最大值近似计算的数论方法等;还给出了一些新进展。
Apostol的名著《微积分》教材分为第1卷和第2卷两卷,第1卷主要讲述单变量微积分,第2卷讲述多变量微积分。本书整体是按照微积分和解析几何的历史发展和科学发展的方式进行处理的。例如,先讲积分,再讲微分。这种处理方式尽管有点不符合常规,但从历史的角度和教学上来说则更加理想。第2卷是第1卷的理念的延续,技巧和理论并重。第2卷分为三个部分:线性分析、非线性分析和专题。第1卷的最后两章和第2卷的前两章是重复的,所以第2卷中讲述线性代数的部分是完整的。(第一部分)线性代数部分讲述了线性变换、行列式、特征值和二次型;同时讲述了在分析中的应用,特别是线性微分方程。(第二部分)讨论了多变量函数,并将微积分与线性代数一起讨论。讲述了标量和向量域的链式法则,以及在偏微分方程和极值问题中的应用。积分包括线积分、多重
Apostol的名著《微积分》教材分为第1卷和第2卷两卷,第1卷主要讲述单变量微积分,第2卷讲述多变量微积分。本书整体是按照微积分和解析几何的历史发展和科学发展的方式进行处理的。例如,先讲积分,再讲微分。这种处理方式尽管有点不符合常规,但从历史的角度和教学上来说则更加理想。第1卷:主要内容为单变量微积分及线性代数引入。包括:历史发展;集合论的基本观点;实数系的公理化;积分的概念;积分的应用;连续函数;微积分;积分和微分的关系;对数、指数和反三角函数;函数的多项式逼近;微分方程引入;复数;序列、无限级数和反常积分;函数序列和级数;向量代数;向量代数在解析几何中的应用;向量值函数的微积分;线性空间;线性变化和矩阵。
朱华伟著北京内容简介本书以国际数学奥林匹克及国内外高层次数学竞赛为背景,论述竞赛数学的形成背景,探讨竞赛数学的教育价值,归纳出竞赛数学的基本特征,把竞赛数学涉及的内容归为数列、不等式、多项式、函数方程、平面几何、数论、组合数学、组合几何8节,每一节内容包括背景分析、基本问题、方法技巧、概念定理、经典赛题,试图对数学竞赛所涉及的内容、方法、技巧作一系统总结和界定,并通过典型的赛题进行阐述.注意题目的来源与推广的讨论,重视新问题的收集与传统解法的优化,反映了国内外数学竞赛命题的**潮流.以此为基础,研究竞赛数学的命题原则及命题方法.
本书是一本关于数据包络分析(DEA)方法、模型和理论的专著,是作者十几年工作的总结。第一章详细地讨论了DEA模型C2R;第二章讨论了微观经济学中的效率和生产可能集,为以后各章的讨论做微观经济方面的准备;第三章使用具有取值0和1的三个参数的综合DEA模型,统一形式地讨论了“经典”的DEA模型C2R,BC2,FG和ST;第四章给出了综合DEA模型对应的生产可能集的(弱)生产前沿面的特征、结构及构造方法;第五章研究了决策单元的规模收益和“拥挤”迹象分析;第六章研究了综合DEA模型的对策论背景;第七章研究了具有无穷多个决策单元的DEA模型;第八章使用DEA方法进行技术进步评估;第九章研究非参数的DEA最优化模型;第十章和第十一章分别研究了具有“偏好锥”和“偏袒锥”的综合DEA模型及其性质和作用。
Camassa-Holm方程是一类十分重要而又特别的新型浅水波方程,有广泛的应用背景。该类方程存在一类尖峰孤立子,并且它是完全可积的,具有双哈密顿结构和Lax对。本书给出该类方程的物理背景并阐述它的完全可积性。对该类方程的行波解作分类,获得多种奇异孤立波解;给出该类方程的谱图理论和散射数据;利用反散射方法,给出该类方程的多孤立子解。获得该类方程的整体强解的存在性及整体弱解的存在性;得到该类方程柯西问题的局部适定性;研究它们的blow-up问题以及尖峰孤立子解的轨道稳定性。本书同时研究含尖峰孤立子的Degasperis-Procesi方程及b族方程,研究前一类方程激波的形成及动力学分析,给出b族方程的水波结构和非线性平衡关系,对Degasperis-Procesi方程的适定性给出具体证明。 本书适合数学、物理和力学专业的研究生、教师及相关领域的科研工作者