本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及值,作图,轨迹,平面闭折线,圆的推广十个专题.对平面几何中的 500 余颗璀璨夺目的珍珠进行了系统地,全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果, 本书中的1 500 余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及成果, 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设"竞赛数学""中学几何研究"等课程的教学参考书.
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
本书汇集了历届国际数学奥林匹克竞赛试题及解答.该书广泛搜集了每道试题的多种解法,且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强.本书可归结出以下四个特点,即收集全、解法多、观点高、结论强. 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
本卷是集合论的模型分析部分。在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型??哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容性;第三大目标是建立集合论论域的具有典范意义的外模型??科恩的力迫扩张模型,从而证明连续统假设以及选择公理的相对独立性。这三大目标分为三章分别来实现。在一定意义上讲,每一章体现一种基本方法。这些基本方法是从事集合论研究的最基本的方法。
《10000个科学难题 数学卷》是*、科学技术部、中国科学院和国家自然科学基金委员会联合组织开展的 10000个科学难题 征集活动的重要成果,书中的题目均由国内国际知名的数学专家撰写。书中收集了有关数学很多分支学科及数学的应用等方面的大量问题,以及当今一些重要的数学问题。
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。
本书前5章讲述三角范畴和导出范畴的基本理论;第6~11章讨论了Frobenius范畴的稳定范畴、Gorenstein同调代数、奇点范畴、Auslander-Reiten三角与Serre对偶、三角范畴的t-结构与粘合等专题。附录提供了全书所要用到的范畴论方面的概念和结论。每章均配有习题并包含提示。本书强调三角范畴与Abel范畴之间的比较和转化研究。
本书主要介绍了直线与平面的一些特有性质,以及立体几何中的一些基本结论与研究成果.全书共分为六章:章直线与平面,第二章多面角,第三章多面体与平行六面体,第四章四面体,第五章规则多面体,第六章曲面体. 本书适合高中师生、高等院校数学与应用数学专业师生,以及数学爱好者参考阅读.
本卷是在前两卷的基础上对集合论保证无穷集合存在的无穷公理的层次分析。这种分析既包含组合分析,也包含逻辑分析;既包含内模型分析,也包含外模型分析;归根结底是揭示各种高阶无穷公理对整个集合论论域的影响,尤其是对实数集合的影响。因此,第三卷的第1章侧重于大基数的组合分析、逻辑分析以及内模型构造;第2章侧重于在大基数上构造各种各样的具有典范意义的力迫扩张,从而解决包括奇异基数假设在内的一些长期遗留问题的独立性问题;第3章侧重于分析高阶无穷对实数子集合正则性的影响。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
本书是现代图论教学中被广泛采用的研究生教材,它在前4版的基础上进行了进一步扩充和更新。其叙述的方式非常有特色:先解释定理的意义、证明的思路,并对主要思路进行描述,再提供详尽严格的证明,从而阐述图论的核心内容,让读者容易地了解这个领域的精髓所在。特别地,对若干图论中的重要定理给出多种证明。 本书囊括了当代图理论中最重要的专题,对每个专题从基本知识,到主要的结果和技巧进行介绍,并指出当前的研究主流和方向,是不可多得的兼顾教学和研究的专著。
本书介绍了物理学科研工作所需的数学知识和相应的数学基础,包括10章内容,分别是变分法、希尔伯特空间、二阶线性常微分方程、贝塞尔函数、狄拉克δ函数、格林函数、范数、积分方程、数论在物理逆问题中的应用和任意维空间的基本方程。本书内容与本科阶段己经学过的数理方法衔接,并尽可能地反映最新的科研成果。本书对概念的说明与公式的推导力求详尽全面,内容叙述清楚,便于读者学习。各章末尾大量的习题有助于读者巩固和扩展正文中学到的知识内容。
本书系统介绍了生物数学的基本建模思路、研究方法、数据处理和数值实现方法。简明扼要地阐述了数学与生物学交叉融合的必然性与重要性,以及生物数学在种群生态学、传染病疫情预测预警、药物设计、生物资源管理与有害生物控制、细胞与分子生物学等领域的经典应用,介绍了数据与生物数学模型对接分析中常用的三种参数估计方法。为了突出生物数学是如何服务于突发重大公共卫生事件或传染病防控的,实例研究中给出了2009年封校策略与甲型H1N1流感的控制、2014年广州登革热疫情大暴发关键因子分析、雾霾防控与流感样病例数据的多尺度模型分析。本书各章均配备了习题。为了方便读者和本书的完整性,第12章给出了本书需要用到的各种数学基础知识。
本书是由Fields 奖得主T.Gowers 主编、133位著名数学家共同参与撰写的大型文集。全书由288篇长篇论文和短篇条目构成,目的是对20世纪最后一二十年纯粹数学的发展给出一个概览,以帮助青年数学家学习和研究其最活跃的部分,这些论文和条目都可以独立阅读。原书有八个部分,除第Ⅰ部分是一个简短的引论、第Ⅷ部分是全书的“终曲”以外,全书分为三大板块,核心是第Ⅳ部分“数学的各个分支”,共26篇长文,介绍了20世纪最后一二十年纯粹数学研究中最重要的成果和最活跃的领域,第Ⅲ部分“数学概念”和第Ⅴ部分“定理与问题”都是为它服务的短条目。第二个板块是数学的历史,由第Ⅱ部分“现代数学的起源”(共7篇长文)和第Ⅵ部分“数学家传记”(96位数学家的短篇传记)组成。第三个板块是数学的应用,即第Ⅶ部分“数学的影响”(14篇长文章)。作为全书“终
本书是由Fields奖得主T.Gowers主编、133位著名数学家共同参与撰写的大型文集.全书由288篇长篇论文和短篇条目构成,目的是对20世纪最后一二十年纯粹数学的发展给出一个概览,以帮助青年数学家学习和研究其最活跃的部分,这些论文和条目都可以独立阅读.原书有八个部分,除第I部分是一个简短的引论、第观部分是全书的“终曲”以外,全书分为三大板块,核心是第W部分“数学的各个分支”,共26篇长文,介绍了20世纪最后一二十年纯粹数学研究中最重要的成果和最活跃的领域,第m部分“数学概念”和第V部分“定理与问题”都是为它服务的短条目.第二个板块是数学的历史,由第n部分“现代数学的起源”(共7篇长文)和第W部分“数学家传记”(96位数学家的短篇传记)组成.第三个板块是数学的应用,即第训部分“数学的影响”(14篇长文章).作为全书“终曲”的第观部
1977年,为考查一年级的博士研究生是否已经成功掌握为攻读数学博士学位所需的基本数学知识和技能,加州大学伯克利分校数学系设立了一项书面考试,作为获得博士学位的首要要求之一。该项考试自其创设以来,已成为研究生获得博士学位必须克服的一个主要障碍。本书的目的即为出版这些考试材料,以期对本科生准备该项考试有所帮助。 全书收录最近25年的1250余道伯克利数学考试试题,对所有计划攻读数学博士学位的学生,本书中的试题和解答都颇具价值,读者研读完本书,在诸如实分析、多变量微积分、微分方程、度量空间、复分析、代数学及线性代数等学科的解题能力都将得到提高。 这些问题按学科及难易程度编排,每道试题均注明相应的考试年月,读者可以依此方便地整理由各套试题。附录介绍如何得到电子版试题,考试大纲以及各次考试的