本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
本书旨在引进与诠释俄罗斯著名语言学家、语言哲学家、符号学家IO.C.斯捷潘诺夫的符号学思想,为我国符号学研究注入新鲜血液。事实上,IO.C.斯捷潘诺夫的符号学思想在我国学界早有涉猎,只是鲜有系统梳理其思想脉络,凝练其理论精要者。然而,只言片语难以穷尽这座丰厚的符号学思想宝库,也无法为我国符号学学理体系建设供给有效养料。因此,本书尝试结合宏观与微观视角,分别着眼IO.C.斯捷潘诺夫的普通符号学和观念符号学思想,寻求普通和分支符号学双向学理建构的经验借鉴,为优秀理论本土化工作夯实基础。
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。《有限群构造新论》介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,《有限群构造新论》详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。《有限群构造新论》可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
国际大学生数学竞赛是国际上较高层次的大学生参加的高级别数学竞赛。本书汇集了从第1届至17届国际大学生数学竞赛的试题及其解答. 本书适合于大学数学系师生及相关专业研究人员和数学爱好者使用。
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
本书内容主要包括代数、几何、三角、初等数论、一元微积分及级数等,书中通过一些在其他书上不容易找到的例题、问题来演示数学解题的技巧。 本书适合于参加大学生数学竞赛及中学生奥大匹克数学竞赛的学生,对于数学爱好者、数学研究者,它也是一本极好的参考书。
极限是从初等数学跨向高等数学的一座重要桥梁。在青少年阶段或更早吸收了解极限先进思想和概念,无疑对他们的人生发展有着不可估量的影响。 本书图文并茂,根据青少年的思维特点,沿初涉极限、计算极限、研究极限和超越极限的主线,生动详尽地论述了古今无数大家对于极限的探索和认识过程、他们遇到的千难万阻、他们开辟的创新之路和他们给人类留下的巨大财富。 有志青少年读者已经不满足道听途说或一知半解,他们所需要的不仅是有趣的轶事和数学典故,而且还要知道大师们的具体解决办法。本书限于用初等的方法给出开普勒计算酒桶体积、球堆积猜想、牛顿一般二项式定理和高斯的二乘法。这无疑是一个大胆的尝试,即使从高等数学角度来说还不够严格,但是作为满足青少年的求知欲望和进一步创新的动力还是非常值得做的。 本书适合