本书是综合大学数学系“数学分析”课程的辅导教材。本书是配合主教材《数学分析》而编写的同步使用的学习辅导书。全书共12章,每章按照内容提要、教学要求、典型例题分析编写,对学习中出现的疑难问题给予指导。
极限是从初等数学跨向高等数学的一座重要桥梁。在青少年阶段或更早吸收了解极限先进思想和概念,无疑对他们的人生发展有着不可估量的影响。本书图文并茂,根据青少年的思维特点,沿初涉极限、计算极限、研究极限和极限的主线,生动详尽地论述了古今无数大家对于极限的探索和认识过程、他们遇到的千难万阻、他们开辟的创新之路和他们给人类留下的巨大财富。有志青少年读者已经不满足道听途说或一知半解,他们所需要的不仅是有趣的轶事和数学典故,而且还要知道大师们的具体解决办法。本书限于用初等的方法给出开普勒计算酒桶体积、球堆积猜想、牛顿一般二项式定理和高斯的二乘法。这无疑是一个大胆的尝试,即使从高等数学角度来说还不够严格,但是作为满足青少年的求知欲望和进一步创新的动力还是非常值得做的。本书适合具有中学及以上
《高考数学压轴题解题诀窍(上)》以高考数学压轴题为主,用巧妙的方法分析及解答压轴题,大大提高解压轴题的效率。首先,对近七年高考数学压轴题题型进行分析和复习建议。其次,从知识内容的角度分析高考数学压轴题中常见题型的解题诀窍。包括圆锥曲线问题、导数及其应用问题、数列问题、不等式问题。内容独特,题型全面,针对性强,是提高数学水平的理想用书。
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
《混沌数学基础》主要从数学角度讲述混沌的概念、性质、基本理论与解析判定方法。《混沌数学基础》引入了Li—Yorke混沌与Devaney混沌概念并讨论其条件化简问题,证明了三角帐篷映射、蒙古包映射、符号空间上移位映射以及平面Smale马蹄映射等映射或系统的混沌性,给出了“周期三意味着混沌”的详细证明,证明了Devaney混沌与Li—Yorke混沌等在拓扑共轭下的不变性,讲述了拓扑熵及其与Li—Yorke混沌的关系等并展示了用Melinkov定理判别系统混沌性的方法。
本“导论”是中国科学技术大学非数学专业通用的讲义,是在40年的使用过程中,经过不断的修订、充实而成的。 与同类书相比,其广度有所拓宽,论证定理、公式逻辑严谨,编排内容循序渐进,阐述概念联系实际,深入浅出。 为加深对概念、定理等的理解和掌握,书中编有丰富的例题,以及习题和总复习题。 本“导论”分三册出版。本册讲述单变量函数微积分,中册讲述空间解析几何、多变量函数微积分,下册讲述组数与常微分方程。 本书另配学习辅导一册。 本册内容包括函数的极限,单变量函数的微分学,单变量函数的积分学,可积常微分方程共四章。 本“导论”可作理工科院校非数学专业或师范类院校数学专业的教材或教学参考书,也可供具有数学基础的读者自学。
本书共24讲,主要包括数列与函数极限,函数的连续与间断,导数与微分的概念及法则,微分中值定理与洛必达法则,函数单调性与极值问题,不定积分,定积分的概念、理论与计算,定积分的几何应用与物理应用,向量及其运算,曲面与曲线,多元函数微分学,二重积分和三重积分,曲线与曲面积分,无穷级数,微分方程。 本书的主要特点是与教材同步,内容分级,以满足不同层次和不同类型读者的需要。本书各讲结构相同,包括内容提要、重点难点、典型方法与例题、习题四部分。 本书作为教学参考书,供高等学校师生参考,也可作为考研的辅导教材。