本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
该书介绍了一些的数论问题,适合不同层次的读者阅读。一方面,作者不需要更宽泛的数学知识;事实上,只要在数学方面接受过正规的学校教育就足够了。另一方面,作者探讨了一些真正的数学兴趣问题,并以更易读懂的方式讲解,因此,数学知识丰富的作者在阅读此书时会感到非常愉悦和有益。该书中几个值得注意的点:数学归纳法的详细讲述和通过该法证明的独特的因子分解定理。
内容介绍阿尔·花拉子米的《算法》与《代数学》是他的代表性*作,也是数学史上具有重要价值的*作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。《算法与代数学(修订版)(精)》读者对象主要为数学工作者、数学史工作者及相关专业的大学师生。暂时没有目录
本书共分三卷。 上卷共分五编,分别为 编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。 中卷共分四章,分别为 章圆周的答分和正多边形,第二章线的连接,第三章比例,斜率和锥度,第四章曲线。 本书适合大学生、中学生及平面几何爱好者研读。 下卷共分六编,分别为: 编D·希尔伯特论平面几何作图问题,第二编F·克莱茵论平面几何作图问题,第三编И·И·亚历山大洛夫论平面几何作图问题,第四编Л·И·别列标尔金论平面几何作图问题,第五编考斯托夫斯基论尺规作图,第六编平面几何作图问题散论,及附录。 本书适合大学生、中学生及平面几何爱好者。
本“导论”是中国科学技术非数学专业通用的讲义,是在近50年的使用过程中,经过不断修订、充实而成的,与同类书相比,其广度有所拓宽,认证定理、公式逻辑严谨,编排内容循序渐进,阐述概念联系实际,深入浅出,为加深对概念、定理等的理解和掌握,书中编有丰富的例题,以及复习思考题、习题和复习题。本“导论”分上、下两册出版,上册讲述单变量函数微积分与空间解析几何。下册讲述多变量函数微积分、级数与常微分方程。另配学习辅导一册。本册内容包括函数的极限、单变量函数的微分学、单变量函数的职分学、可积常微分方程和空间解析几何共5章。本“导论”可作为理工科院校非数学专业或师范类院校数学专业的或教学参考书,也可供具有数学基础的读者自学。
《变分分析与广义微分》是现代变分分析创始人之一的美国州立韦恩大学(WayneStateUniversity)的BorisS.Mordukhovich教授的*专著,涵盖了无穷维空间中变分分析的*成果及其应用。原著分两卷,上卷阐述无穷维变分分析的基础理论,下卷则讨论在*化、控制和经济学等各方面的应用。第5章系统探讨了无穷维空间上的光滑和非光滑约束优化与均衡问题。第6章和第7章论述了变分分析在动态*化和*控制上的应用。其中第6章研究由常微分动力系统控制的*控制问题;第7章讨论分布参数控制系统。第8章提供了变分分析在福利经济学中的应用。
本书全面介绍了锦鲤的鉴赏与养殖,包括锦鲤的鉴赏标准、锦鲤品种分类、养殖技术、鉴选技术、鱼病防治等五大部分。全书图文并茂,文字通俗易懂。本书对一般有兴趣了解锦鲤的读者,能借此书获得全面的认识;对于正在养殖锦鲤的爱好者,能借此书进一步提高自己对锦鲤养殖与鉴赏的认识;对于有养殖实践的读者,又可从中吸取有益的理论和宝贵的经验。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
基本信息书名:有限群初步原书定价:118元售价:94.40元,作者:徐明曜著出版社:科学出版社出版日期:2014-01-01ISBN:9787030394118字数:470000页码:375版次:1装帧:平装开本:16开商品重量:内容提要:《现代数学基础丛书:有限群初步》是在十多年前出版的《有限群导引》的基础上进行修改、补充、材料更新以及删减过时内容而形成的新的有限群教材。《现代数学基础丛书:有限群初步》共分8章。第1章叙述群论基本的概念,其中有些内容在群论课程的先修课“抽象代数”中已经学过,但相当部分内容是新的。整个这一章是学习本书的基础,因此必须认真阅读,并且应该做其中大部分的习题,从第2章起则是沿着两条主线进行:一条主线是群的作用;另一条主线是关于群的构造问题,本书作者多年从事有限群的教学和研究工作,这本教材是他多年教学工作的总结。《现
本书共24讲,主要包括数列与函数极限,函数的连续与间断,导数与微分的概念及法则,微分中值定理与洛必达法则,函数单调性与极值问题,不定积分,定积分的概念、理论与计算,定积分的几何应用与物理应用,向量及其运算,曲面与曲线,多元函数微分学,二重积分和三重积分,曲线与曲面积分,无穷级数,微分方程。本书的主要特点是与教材同步,内容分级,以满足不同层次和不同类型读者的需要。本书各讲结构相同,包括内容提要、重点难点、典型方法与例题、习题四部分。本书作为教学参考书,供高等学校师生参考,也可作为考研的辅导教材。
内容介绍阿尔·花拉子米的《算法》与《代数学》是他的代表性*作,也是数学史上具有重要价值的*作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。《算法与代数学(修订版)(精)》读者对象主要为数学工作者、数学史工作者及相关专业的大学师生。暂时没有目录
《变分分析与广义微分》是现代变分分析创始人之一的美国州立韦恩大学(WayneStateUniversity)的BorisS.Mordukhovich教授的*专著,涵盖了无穷维空间中变分分析的*成果及其应用。原著分两卷,上卷阐述无穷维变分分析的基础理论,下卷则讨论在*化、控制和经济学等各方面的应用。第5章系统探讨了无穷维空间上的光滑和非光滑约束优化与均衡问题。第6章和第7章论述了变分分析在动态*化和*控制上的应用。其中第6章研究由常微分动力系统控制的*控制问题;第7章讨论分布参数控制系统。第8章提供了变分分析在福利经济学中的应用。
本书主要研究几何目标在计算机环境内的数学表示、编辑、计算和传输等方面的理论与方法及相关的应用,其中包含连续性方法和离散性方法。书中内容包括计算几何相关的基础理论、多元样条函数的研究方法、局部多项式插值及超值插值、分片有理函数插值、多项式样条空间结构与代数曲线、NURBS曲线与曲面、曲线/曲面细分方法及曲线与曲面参数化等。本书面向具有本科数学分析和线性代数知识的读者,力求容易入门、由浅入深、讲透原理、联系应用。
本书共分三卷。 上卷共分五编,分别为 编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。 中卷共分四章,分别为 章圆周的答分和正多边形,第二章线的连接,第三章比例,斜率和锥度,第四章曲线。 本书适合大学生、中学生及平面几何爱好者研读。 下卷共分六编,分别为: 编D·希尔伯特论平面几何作图问题,第二编F·克莱茵论平面几何作图问题,第三编И·И·亚历山大洛夫论平面几何作图问题,第四编Л·И·别列标尔金论平面几何作图问题,第五编考斯托夫斯基论尺规作图,第六编平面几何作图问题散论,及附录。 本书适合大学生、中学生及平面几何爱好者。
本书首先论述了广义Hamilton系统及广义Hamilton约束系统的几何积分方法,进而在较详细地介绍了李级数解法和李群李代数基本知识的基础上,又系统而深入地论述了更为广泛的一般形式的非线性动力学微分方程的李群积分方法。本书可供高等院校应用数学专业、物理专业及力学专业的高年级学生、研究生、教师以及有关的科技工作者参考。
基本信息书名:有限群初步原书定价:118元售价:94.40元,作者:徐明曜著出版社:科学出版社出版日期:2014-01-01ISBN:9787030394118字数:470000页码:375版次:1装帧:平装开本:16开商品重量:内容提要:《现代数学基础丛书:有限群初步》是在十多年前出版的《有限群导引》的基础上进行修改、补充、材料更新以及删减过时内容而形成的新的有限群教材。《现代数学基础丛书:有限群初步》共分8章。第1章叙述群论最基本的概念,其中有些内容在群论课程的先修课“抽象代数”中已经学过,但相当部分内容是新的。整个这一章是学习本书的基础,因此必须认真阅读,并且应该做其中大部分的习题,从第2章起则是沿着两条主线进行:一条主线是群的作用;另一条主线是关于群的构造问题,本书作者多年从事有限群的教学和研究工作,这本教材是他多年教学工作的总结。《
逻辑学是研究思维形式的结构及其规律以及认识事物的简单逻辑方法的科学。逻辑学作为思维科学,与人的智能的培养与提高联系极其密切。逻辑学具有全人类性、基础性、工具性与规范性,被称为人类成员都得学习与掌握的“思维的语法”。学习逻辑学,有助于培养和提高认知自学能力,有助于培养与提高理论素养,有助于培养和提高科学研究能力,有助于培养和提高思维素质。逻辑学在智力开发、思维素质的培养与提高方面,具有其他学科与课程不可替代的重要作用。当今世界,逻辑学已渗透到许多学科领域,诸如哲学、心理学、计算机科学、语言学、物理学、法学、伦理学等。许多国家,尤其是欧美发达国家对逻辑的研究和普及倾注了巨大的人力、财力、物力。20世纪80年代,联合国教科文组织正式将逻辑学列为数、理、化、天、地、生同等重要的基础学科。
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。