本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
本书是沙法列维奇代数几何基础教程的第1卷。本书作者是当代著名的苏联/俄罗斯代数几何学家,是一位有性,知识极为渊博的数学家。作者的代数几何基础教程问世(俄文版1972年初版,英文版1977年初版)40多年来,一直被视为一部重要的代数几何经典名著。与同类书相比,本书内容全面,详尽,注重给出抽象理论的几何背景和起源,并配有充分反映几何本质的实例和图解。本书所需预备知识仅限于代数基础,是高年级本科生和研究生学习代数几何的优选教材。
本书是Springer《Graduate Texts in Mathematics》系列丛书第150卷。为了更好的理解交换代数,运用几何的观点去研究交换代数,也就是代数几何学观点,是本书的一大特色。作者从基本观点——局部化以及自分解理论出发,通过对维数理论、微分理论、同调方法、自由解理论和对偶性的研究,强调该理论的出发点以及它们与数学其他部分的联系,练习中大量的引用强化了对该理论的理解。本书的还专门运用了一章来讲述Grobner基本观点以及基于这个关点的对交换代数以及代数几何很有建设性的方法。
本书是沙法列维奇代数几何基础教程的第2卷。本书作者是当代著名的苏联/俄罗斯代数几何学家,是一位有性,知识极为渊博的数学家。作者的代数几何基础教程问世(俄文版1972年初版,英文版1977年初版)40多年来,一直被视为一部重要的代数几何经典名著。与同类书相比,本书内容全面,详尽,注重给出抽象理论的几何背景和起源,并配有充分反映几何本质的实例和图解。本书所需预备知识仅限于代数基础,是高年级本科生和研究生学习代数几何的优选教材。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
本书是Springer《数学研究生教材》第142卷(GTM142),初版于1991年,这是第3版。本书内容包括现代实分析与泛函分析基础理论,全书分6部分,共23章。本书的读者对象为数学及有关专业的研究生和科研人员。
本书论述当代统计方法和非线性时间序列分析,着重阐述过去十年发展起来的非参数和半参数技术。主要内容包括相空间、频域及时域中的建模技术;为说明参数方法和非参数方法在时间序列数据分析中的一体性,本书给出某些参数化非线性模型的*论述,如ARCH/GARCH模型和阈值模型;以及关于ARMA模型的一个简洁观点。本书始终使用实际应用中得到的数据,阐明如何借助非参数方法揭示高维数据的局部结构。本书还介绍了一些重要的技术工具。本书适合研究生,时间序列分析方面的实际工作者,该领域不同程度的研究人员。本书在统计界和诸如计量经济学、实证金融学、群体生物学及生态学之类的其他广泛领域都有其价值。阅读本书需要概率论和统计的基本知识。
《解码三大数学常数e的密码》以生动活泼的形式,通俗地介绍了对数的发明、这一发明的重大意义、如何用它来解决实际问题,以及常用对数的诞生和应用;翔实地揭示了自然对数的诸多之谜它的底e为什么与圆周率π一样在整个科学中大放异彩?为什么数学家要用e作为自然对数的底?以c为底的对数为什么叫自然对数?e究竟是一个什么样的数?……《解码三大数学常数e的密码》不但把e融入整个数学以至科学之中,而且把人文精神融入其中,对提高人的综合素质,特别是培养人的健康心理大有裨益。《解码三大数学常数e的密码》适合具有中等及以上文化的青少年或成人阅读,也是研究e的重要参考书。您想看凡尔纳小说中的“冒牌大力士”吗?您想独自在拔河比赛中让一群人俯首称臣吗?那就“跟我走吧”,现在就出发,穿过快乐的河流,就会到达e的“老家”
本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课“线性代数”的相关知识点,也就是经典版本的《线性代数》中的 大多数知识点。这些知识点是相关在校学生的必修课程,也是从业人员深造的必要知识。本书引入了矩阵函数,从函数角度讲解了向量空间、线性方程组求解、矩阵的秩、行列式、相似变换、特征值特征向量、二次型等知识,逻辑上一以贯之,再辅以很多生活案例,大大降低了学习门槛。
《高等数学基础理论与实验分析》主要内容包括函数与极限、导数与微分,中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、常微分方程、无穷级数、重积分及其应用、曲线积分与曲面积分等。《高等数学基础理论与实验分析》结构严谨、逻辑清晰,注重应用,实用性强,可供相关工程技术人员参考。
《真希望几何可以这样学(基础篇)》 《真希望几何可以这样学》是日本有名数学教育家星田直彦所著的数学科普经典,分为“基础篇”和“提高篇”,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣! 《真希望几何可以这样学 提高篇》 《真希望几何可以这样学》是日本有名