偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书是普通高等教育“十三五”规划教材、全国高等医药院校规划教材《医药高等数学》(第5版)的配套教材,也是本书的第4版。全书分10章,包括一元函数微积分、空间解析几何、多元函数微积分、微分方程与无穷级数等。《医药高等数学》侧重于理论,本书侧重于理论知识的归纳总结、各类各层次习题的分析与解法,它有利于学生对高等数学的概念与理论的理解,有利于培养学生归纳总结、分析解决问题的能力,有利于学生对运算和方法的掌握,也有利于沟通教与学两个教学环节。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书是大学数学学习指导系列之一,包含了线性代数与空间解析几何中的主要内容。全书共分十一章,它们是行列式、矩阵、n维向量空间、线性方程组、空间解析几何、矩阵的特征值与特征向量、二次型、一元多项式、线性空间、线性变换和欧几里得空间等。本书精选了将近400道例题和400道练习题,选材注重突出课程的基本要求,力求做到解题简明,思路清晰,由易到难,从基本到综合,循序渐进。本书编写体例有内容精讲、典型例题、练习和提示与答案四部分。概述了每一章节的基本概念、基本定理和基本方法。在某些难以理解或容易出错的地方特别作出解释,指出各概念之间的联系。在大部分例题中,都有思路分析、解题过程、小结以及注解等,有的题还提供了每一节后面都安排了适量的习题,读者可以通过练习进一步巩固所学到的知识,掌握各种题型的解
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
程红萍主编的《高等数学学习辅导与习题全解》根据*高等院校教学指导委员会审订的“高职高专数学教学基本要求”,按程红萍主编的《高等数学》(第3版)的章节顺序编排。与教学需求保持同步。全书共分十章,每章包括内容提要、教学要求、问题答疑、典型例题、习题全解等栏目。为了引导学生认真阅读教材,深刻理解、牢固掌握基本概念、基本理论和基本算法,每章列出了内容提要和教学要求,学生可以根据教学要求和自己的实际情况,确定自己的难点与学习重点,及时复习、答疑;针对学生常见的疑问与错误,每章都编写了问题答疑和典型例题,帮助读者解决学习中的疑难问题;习题全解则是真正从学习者的角度出发,给出解题的每一个过程、步骤和答案。《高等数学学习辅导与习题全解》体系完整,层次清晰,深入浅出,便于读者自学,既可作为选用
本书分上、下两册出版。上册内容包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程等。各章都配有难度适当的典型习题和综合测试题,书末附有各章习题和综合测试题参考答案。下册内容包括空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数等内容。各章配有循序渐进、难度适当并且典型的习题和综合测试题,书末附有各章习题和综合测试题参考答案。 本书吸收了国内外教材的优点,在不影响本学科系统性、科学性的前提下,力求通俗简明而又重点突出,难点处理得当而又形象直观。本书可供理工类本科各专业使用,也可供高职、高专的师生参考。
本书内容根据我国普通高校本科生《高等数学课程基础要求》和*《全国硕士研究生入学统一考试数学考试大纲》高等数学部分,按照同济大学应用数学系主编的《高等数学》第五版章节顺序编写。 书中的每节由“考纲要求”、“内容提要”和“典型例题解析”三部分组成。在“考纲要求”中,列出了教学大纲和考研大纲对基本概念、基本理论和基本方法提出的要求;在“内容提要”中,对本节的知识点进行了系统梳理;在“典型例题解析”中,所选题目绝大部分来源于历年考研真题,并且对这些题目进行了分类,从而更加有利于学生的学习。
李广全主编的《高等数学》是按照新形势下教学改革的精神,依据天津市成人高等本科教育(专升本)“高等数学”课程的教学基本要求编写而成的。内容包括一元函数微积分概述、多元函数微分学、多元函数积分学、曲线积分与曲面积分、常微分方程、级数。 《高等数学》论述清晰,通俗易懂,书中结合实际给出大量的例题和习题,强化了数学的应用。书中结合数学软件“MatIlematica”开设了数学实验,为课程的学习提供了简单实用的工具,体现了时代的气息。为了适应成人教育的特征,帮助学生更好地学习和理解知识,教材配有同步练习册及助学光盘。助学光盘中包含各章的知识内容提要、各实验的操作演示录屏、教材和练习册的习题参考解答。 本书适合成人高等本科教育(专升本)工科各专业学生学习“高等数学”课程使用,也可作为其他类型本科学
《高等数学(第2版)上册》分为上、下两册。上册包括函数、极限与连续、一元函数微分学、一元函数积分学以及常微分方程初步等内容,下册包括无穷级数、空间解析几何与向量代数、多元函数微分学以及多元函数积分学等内容。每节之后配有习题,习题按照难易程度分为A和B两级。每册书末附有习题答案。 《高等数学(第2版)上册》主要强调的是微积分的运算以及运用,运用中涉及到的函数主要是初等函数。我们希望在这样一个学习过程中,初学者能够理解并接受微积分的基本思想与方法,既获得知识,获得学习其他课程的工具,也提高自己的数学素养。
全书内容编写系统、新颖、清晰、独到,充分体现了如下四大特色: 一、知识梳理清晰、简洁:直观、形象的图表总结,精炼、准确的考点提炼,权威、独到的题型归纳,将教材内容抽丝剥茧、层层展开, 呈现给读者简明扼要、层次分明的教材知识结构,以便于读者快速复习、高效掌握,形成稳固、扎实的知识网,从而为以后提高解题能力和数学思维水平夯实基础。 二、能力提升迅速、互动:所有重点、难点、考点,统统归纳为一个个在考试中可能出现的基本题型,然后针对每一个基本题型,给出丰富的精选例题、考研真题,举一反三、深入讲解,真正将知识掌握和能力提升高效结合,一举完成。 三、联系考研密切、实用:本书是一本教材同步辅导,也是一本实用的考研复习用书,书中处处联系考研。例题中有考研试题,同步自测题中也有
本书是陈光曙主编的《大学数学(理工类)》(第2版)上、下册的配套教辅.全书共分10章,各章的名称和顺序都是按照《大学数学(理工类)》第2版的结构顺序编排的,以方便学生学习时对照参考,每一章分为三个部分:一、考试内容和要求,对考试内容和考试要求进行了简要归纳,便于复习时自我检查;二、典型例题选讲,精选了一些具有代表性的例题,其中有一些选自近几年的考研试题,引导学生分析解题思路,归纳解题技巧;三、课后习题解答,对课后的全部习题,包括A类和B类,给出了详细的解答。 《面向21世界普通高等教育规划教材及学习指导:大学数学学习指导与习题详解·配第2版》内容翔实,为学生学好大学数学提供了极大的便利,既可作为选用《大学数学(理工类)》(第2版)上、下册高校学生的配套教辅,也可作为非数学专业学生考
本书共分三卷。 上卷共分五编,分别为 编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。 中卷共分四章,分别为 章圆周的答分和正多边形,第二章线的连接,第三章比例,斜率和锥度,第四章曲线。 本书适合大学生、中学生及平面几何爱好者研读。 下卷共分六编,分别为: 编D·希尔伯特论平面几何作图问题,第二编F·克莱茵论平面几何作图问题,第三编И·И·亚历山大洛夫论平面几何作图问题,第四编Л·И·别列标尔金论平面几何作图问题,第五编考斯托夫斯基论尺规作图,第六编平面几何作图问题散论,及附录。 本书适合大学生、中学生及平面几何爱好者。
《高等数学:经管类(上册)(第2版)》是在贯彻、落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求的基础上,按照“经济管理类本科数学基础课程教学基本要求”,为适应21世纪教学改革的需要与市场经济对人才的需求,在第1版的基础上,结合多数本专科院校学生基础和教学特点进行编写的,是面向21世纪的课程教材。全书分上、下两册出版。上册内容包括函数、极限与连续,导数与微分,中值定理与导数应用。不定积分,定积分及其应用和广义积分;下册内容包括向量代数与空间解析几何,多元函数微分学及其应用,多元函数积分学,无穷级数,常微分方程。各节后均配有相应的习题,书末附参考答案。 本教材结构严谨、知识系统、讲解透彻、难度适宜、通俗易懂、适应面宽。适合作为普通高等院校经济管理类有关专业的高等数学课程的
本书是高职高专院校工科类与经济类数学教学辅导用书,适应于我国高等职业教育。为了适应高等职业教育的教学改革和发展,满足高等教育高等数学课堂上“教、学、做”一体化的
杨海涛主编的《高等数学》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验。每册书后附有习题答案与提示。 《高等数学》知识系统、体系结构清晰、详略得当、例题丰富、语言通俗、讲解透彻、难度适中。适合作为普通高等院校工科类、理科
高等数学课程对于大学生来说,其重要性是不言而喻的,近年来被许多部委和省市列为教学的重点评估课程之一。在全国硕士学位研究生考试中被指定为全国统考科目。然而,一方面近年来由于教学改革的实施,高等数学授课时间有所减少,受到时间限制,概念的深入探讨,知识点的融会贯通,知识面的拓展势必受到一定影响;另一方面后续课程以及研究生入学考试对高等数学的要求在教学大纲范围内有深化的趋势。如何解决这一新的矛盾,如何把大学期间高等数学的学习与研究生入学考试复习紧密衔接,为此作者根据在北京大学多年的教学实践以及硕士研究生入学考试高等数学辅导的经验,听取了广大学员的意见,以同济·第六版为蓝本,参考了北京大学、清华大学、复旦大学、上海交通大学、武汉大学、华中科技大学、浙江大学、四川大学、西安交通大学
《高等数学(理工类第3版)》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验,每册书后附有习题答案与提示。本书是其中的《高等数学(理工类下第3版)》,由杨海涛主编。 《高等数学(理工类下第3版)》知识系统、体系结构清晰、详略得