本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
本书包含了组合数学的基本内容与方法:抽屉原则、排列组合、容斥原理、生成函数、匹配、组合设计。本书写作力求简练。若干难度不大,且有利于读者掌握知识方法的证明写得很简略,希望读者能通过的独立思考掌握组合数学的内涵。
《交换代数与同调代数(第二版)》针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中最重要且实用的基本内容,而不涉及很专门的课题。在内容的安排上,采取了“低起点,高坡度”的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。
作者在详细全面地介绍了平面代数理论,并从两方面分析了这个数学的经典研究领域:其在古希腊数学研究中的显著地位;它依然是当代数学研究领域里的灵感激发者和主题。同时该书也为我们综合理解和研究当代关于奇异性的研究打下了基础。章中展示了许多拥有优美几何体的特殊曲线——丰富的插图是该书的一大特点,还介绍了投影几何学(在复数域上)。第二章中对Bezout定理进行了简单的证明并详细论述了三次曲线。
This book is a survey of the most important directions of research in transcendental number theory. The central topics in this theory include proofs of irrationality and transcendence of various numbers,especially those,that arise as the values of special functions. Questions of this sort go back to ancient times. An example is the old problem of squaring the circle,which Lindemann showed to bc impossible in 1882,when hc proved that Pi is a trandental number. Euler's conjecture that the logarithm of an algebraic number to an algebraic base is transcendental was included in Hilbert's famous list of open problems; this conjecture was proved by Gel'fond and Schneider in 1934. A more recent result was Anerv's surprising proof of the irrationality of ξ(3)in 1979. The quantitative aspects of the theory have important applications to the study of Diophantine equations and other areas of number theory. For a reader interested in different branches of number theory,this monograph provides both an overvi
本书不在于图的拓扑性质本身,而是着意以图为代表的一些组合构形为出发点,揭示与拓扑学中一些典型对蠏,如多面形、曲面、嵌入、纽结等的联系,特别是显示了定理有效化的途径对于以拓扑学为代表的基础数学的作用。同时,也提出了一些新的曲面模型,为超大规模集成电路的布线尝试构建多方面的理论基础。 本书可作为基础数学,应用数学、系统科学、计算机科学等专业高年级本科生和研究生的补充教材,也可供相关专业的教师和科研工作者参考。
This book is a survey of the most important directions of research in transcendental number theory. The central topics in this theory include proofs of irrationality and transcendence of various numbers,especially those,that arise as the values of special functions. Questions of this sort go back to ancient times. An example is the old problem of squaring the circle,which Lindemann showed to bc impossible in 1882,when hc proved that Pi is a trandental number. Euler's conjecture that the logarithm of an algebraic number to an algebraic base is transcendental was included in Hilbert's famous list of open problems; this conjecture was proved by Gel'fond and Schneider in 1934. A more recent result was Anerv's surprising proof of the irrationality of ξ(3)in 1979. The quantitative aspects of the theory have important applications to the study of Diophantine equations and other areas of number theory. For a reader interested in different branches of number theory,this monograph provides both an overvi
作者是训练有素、造诣精深的数学家,曾发表过一些突破性结果。本书网述解析数论之指数和估计这一分支的一些新技术和新方法,取材于作者已发表或尚未发表的工作、为此本书首先详细讲解了经作者改进后的van der Corput方法、由作者给出的van der Corput方法正确的二维发展、以及由Bombieri等人引进的将指数和估计转化为计数问题的重要下等式。本书的主要结果,包括作者对(0,5十it)估阶等经典问题60年来运用正确的二维方法首次获得的结果(指出了Tichmarsh等人的错误)、作者对Walfisz历时50年前的一个结果的改进、作者对陈景润历时30年的一个结果的改进、作者对贾朝华和Baker历时20年的两个结果的改进、对吴杰历时10年的一个结果的改进、作者关于4-full数分布渐近公式的结果以及作者关于Able群问题迄今为止的结果,书末的附录选辑了作者自2005年以来陆续发现的当代主流
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系和物
本书通过大量简单易懂的示例和练习介绍了有关离散数学的基本概念与基础知识,并把理论知识与一系列实际应用联系起来。主要内容包括:命题逻辑和谓词逻辑、类型集合论、布尔代数、关系、函数、序列、归纳法、图论、组合数学等。通过适当的教学方法,可以加深学生对离散数学的理解。 本书适合所有学习离散数学的学生,并可作为相关专业的教材。
Since the first monograph titled Enumerative Theory of Maps appeared on the subject considered in 1999, many advances have been made by the author himself and those directed by him under such a theoretical foundation. Because of that book with much attention to maps on surface of genus zero, this monograph is in principle concerned with maps on surfaces of genus not zero. Via main theoretical lines, thiook is divided into four parts except Chapter 1 for preliminaries. Part one contains Chapters 2 through 10. The theory is presented for maps on general surfaces of genus not necessary to be zero. For the theory on a surface of genus zero is comprehensively improved for investigating maps on all surfaces of genera not zero. Part two consists of only Chapter 11. Relationships are established for building up a bridge between super maps and embeddings of a graph via their automorphism groups. Part three consists of Chapters 12 and 13. A general theory for finding genus distribution of graph embeddin
本书是一部优秀的李群及其表示论研究生教材,深受数学专业和物理专业的研究生好评。本书初版于1972年,以后经过多次修订重印,本书是1997年的第7次修订重印版。书中对一些问题的处理很有特色,立足点较高,但叙述十分清晰,如线性变换的Jordan-Chevalley分解、Cartan子代数的共轭定理、同构定理的证明、根系统的公理化处理、Weyl特征子公式、Chevalley群的基本结构等。
本书融有向图和无向图为一整体,系统地阐述了图论的基本概念、理论、方法及其算法,内容包括图的基本概念、Euler图与Hamilton图、图论算法、树及其应用、平面图、独立集与匹配、网络流和Petri网。 书中附有大量例题和习题,而且大部分习题有详细解答。 本书选材精炼全面,内容处理恰当且有新意,立论严谨,叙述条理清晰,语言流畅。 本书可用作高校计算机、电子、信息、管理、数学等专业本科生必修课教材,也可供相关专业的研究人员、教师及图论工作者参考。
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。书中详细地介绍了代数方程的各种解法及根的各种性质。对了解代数方程的历史也是很好的素材。 《方程式论》适合大中师生及数学爱好者阅读及收藏。