变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
本书包括小波变换、一元多分辨分析与正交小波、紧支集实小波、小波包、多元小波、双正交小波、样条小波、小波提升理论等发展较为成熟的小波分析基本内容。本书讲解透彻,证明细致,特别关注小波分析解决实际问题的原理。 本书不要求读者具有高深的数学基础,可供希望了解小波分析基本内容及原理的读者参考,也可作为研究生与高年级本科生的小波分析教材使用。
郑慧娆、陈绍林、莫忠息、黄象鼎编著的《数值计算方法(第2版)》是为高等学校信息与计算科学专业编写的教材。内容包含求解线性方程组的数值方法、求解非线性方程的二乘方法、矩阵特征值问题的数值方法、插值、逼近、数值积分、常微分方程的数值解法。作为教材,书中叙述较为详细,便于学生自学复习。其中一部分为可选择的内容,以满足不同学生的需要。对于数学、应用数学、计算机科学等专业相应的课程,同样可以选择《数值计算方法(第2版)》部分内容作为教材。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。