本书内容概括了《数学分析》的全部命题,但该书习题数量多,许多题目在题型和解题方法上具有相似之处,同时该书难题多,许多题目的难度超出对同学们的要求。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,我们从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题涉及内容广、题型多,基础性题目从多个角度帮助广大同学理解相应的基本概念和基本理论,帮助同学掌握基本解题方法;而那些层次性较高的题目,涉及的内容多,技巧性强,掌握这些题目的解题方法,可以使广大同学举一反三,触类旁通,开拓解题思路,更好地掌握《数学分析》的基本内容和解题方法。
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
The controllability and observability are of great importance in boththeory and applications. A plete theory haeen established for linearhyperbolic systems, in particular, for linear wave equations. There havealso been some results for semilinear wave equations. For quasilinearhyperbolic systems that have numerous applications in mechanics, physicsand other applied sciences, however, very few results are available evenwith space dimension one. This monograph iased mainly on the results obtained by the author andhis collaborators in recent years. By mea~s of the theory on the semi-globalclassical solution, a simple and direct constructive method is presentedin a systematic way to get both the controllability and observability in theframework of classical solutions for general first order 1-D quasilinearhyperbolic systems with general nonlinear boundary conditions.Corresponding applications are given for 1-D quasilinear wave equationsand for unsteady flows in a tree-like work of open canals, respectively.
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方
本书系统而全面地介绍了复分析的基本理论和方法及其在工程问题上的应用,且注重理论与实际密切结合。全书共分八章:复数,解析函数,初等函数,复积分,解析函数的级数表示,留数理论,共形映射,应用数学的变换。为了便于读者掌握本书的主要内容,在每章后面都给出了小结和参考文献,并且配备了大量的例题和练习,书末附有练习答案和提示。 本书内容丰富,理论严谨,讲解透彻,可作为高等院校高年级本科生和研究生复分析课程的教材或教学参考书,还可供需要复变函数知识的工程技术人员参考。
本书是一本非常的图论入门书,自从1972年出版版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。目次:引言;概念和离子;路和圈;树;平面性;图的着色;有向图;匹配,婚姻定理和Menger定理;拟阵。
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。 《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的大学生、研究生的教材或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
《测度论(英文版)》综合性强,清晰易懂。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分,通过这五章,读者可以说精通积分知识;第六章讲述微分知识,包括Rd上变量的处理。《测度论(英文版)》的特点是初步并且全面的讲述局部紧Hausdorff空间上的积分知识、Polish空间上的解析和Borel子集和局部紧群上的Haar测度。书中提供了学习目前感兴趣的领域,尤其是调和分析和概率论的工具。每章末都附有具有代表性的习题,从常规题型到扩展训练都有,并且对较高难度的习题附有提示。
数学主要讲述思想的方法,深入理解数学比掌握一大堆的定理、定义、问题和技术显得更为重要。理论和定义共同作用,本书在介绍实分析的时候结合详尽、广泛的阐释,使得读者完全理解分析基础和方法。目次:基础;实数体系结构;实线拓扑;连续函数;微分学;积分学;序列和函数级数;超函数;欧拉空间和矩阵空间;欧拉空间上的微分计算;常微分方程;傅里叶级数;隐函数、曲线和曲面;勒贝格积分;多重积分。 读者对象:数学专业的研究生以及相关的科研人员。
由费定晖、周学圣编演,郭大钧、邵品琮主审的图书《B.Ⅱ.吉米多维奇数学分析习题集题解》(以下简称为《题解》),全书共六册,自1979年经由山东科学技术出版社出版发行以来,历经34个春秋,先后共有4个版本30余次印刷,一直不衰,深得读者厚爱。对此我们倍感欣慰,这将鞭策我们为读者作出更多奉献。 这次受山东科学技术出版社的再次约请,由我负责,在《题解》一书的基础上,从各章节中挑选出较为经典的习题,除了原解答外,有些题还给出了分析提示或思路,从而组成一本新书《B.Ⅱ.吉米多维奇数学分析习题经典解析》(以下简称为《经典解析》),全书共一册出版。 对于《经典解析》一书,我有以下几点考虑: ,考虑到不同层次的读者的不同要求,各类型的习题由浅入深,由易到难。有些题在它的后面还加上注,例如,143题证明施托尔茨定理
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
《数学分析中的问题、方法与实践》由陈汝栋主编,分问题篇、方法篇和实践篇3部分。问题篇包含了数学分析中概念理解、方法使用中的254个问题的错误解析,有些问题还是比较深刻的;方法篇包含了数学分析中的常用方法和技巧,分证明方法和计算方法分别予以提炼和总结,并配以精选的例子;实践篇包含数学分析中的部分理论、方法在实际问题中的应用和近年来部分研究生招生的数学分析试题,特别是最后针对近年来各种教材习题解答的泛滥,按照高等教育出版社出版的复旦大学《数学分析》第三版的顺序,重新选择并改编了习题,以克服同学们抄习题解答的不良习惯。我们也期望任何人不要为本习题集出版解答书籍,以便为同学们学好数学分析提供一个良好的环境。《数学分析中的问题、方法与实践》可作为高等学校理科数学系学生学习数学分析的参考书和