《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
本书是为综合性大学与师范类院校的数学类专业编写的数学分析教材,全书共分上、下两册。上册的内容为一元微积分学与多元微分学,下册的内容为多元积分学、无穷级数、广义积分及傅氏级数等。作者根据多年的教学实践经验,对数学分析的内容体系作了精心的构架与调整,分散了难点,突出了分析学的基础知识与基本训练,使全书内容深入浅出、平实自然、有用有趣。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间
本书是为正在学习数学分析(微积分)的读者,正在复习数学分析(微积分)准备报考研究生的读者以及从事这方面教学工作的年轻教师编写的。 遵循现行教材的顺序,本书全面、系统地总结和归纳了数学分析问题的基本类型,每种类型的基本方法,对每种方法先概括要点,再选取典型而有相当难度的例题,逐层剖析,分类讲解。然后分别配备相应的一套练习。旨在拓宽基础,启发思路,培养学生分析问题和解决问题的能力,作为教材的补充和延深。此外,对现行教材中比较薄弱的部分,如半连续、凸函数、不等式、等度连续等内容,作了适当扩充。 全书共分7章、33节、220个条目、1200个问题,包括一元函数极限、连续、微分、积分、级数;多元函数极限、连续、微分、积分。 本书大量采用全国部分高校历届硕士研究生数学分析入学试题、苏
很多人看到数据分析就望而却步,担心门槛高,无法迈入数据分析的门槛。《谁说菜鸟不会数据分析(全彩)》在降低学习难度方面做了大量的尝试:基于通用的Excel工具,加上必知必会的数据分析概念,并且采用通俗易懂的讲解方式。《谁说菜鸟不会数据分析(全彩)》努力将数据分析写成像小说一样通俗易懂,使读者可以在无形之中学会数据分析。《谁说菜鸟不会数据分析(全彩)》按照数据分析工作的完整流程来讲解。全书共8章,分别讲解数据分析必知必会的知识、数据处理技巧、数据展现的技术、通过专业化的视角来提升图表之美、数据分析报告的撰写技能以及持续的修炼。 本书形式活泼,内容丰富而且充实,让人有不断阅读下去的动力。读者完全可以把《谁说菜鸟不会数据分析(全彩)》当小说来阅读,跟随主人公小白,在Mr.林的指点下轻松掌握数据分析的技
杨有龙编著的《泛函分析引论(高等学校十三五规划重点立项教材)》主要内容可分为三部分:第一部分为空间理论的建立,包含第一章“度量空间”和第二章“线性赋范空间与内积空间”;第二部分为两个空间之间线性映
本书是为工学硕士研究生数值分析课而编写的学位课教材。内容包括:线性方程组的解法,矩阵特征值与特征向量的计算,非线性方程与非线性方程组的迭代解法,插值与逼近,数值积分,常微分方程初值问题的数值解法和偏微分方程的差分解法。内容丰富,系统性强,语言简练、流畅,数值例子和习题非常丰富,并附习题答案。其深度和广度适合工学硕士生的培养要求。 本书还可供从事科学与工程计算的科技人员自学和参考。
《工科数学分析》分上、下两册。本书为其下册,共分四章,依次为:多元函数微分学,多元函数积分学,第二型曲线积分与第二型曲面积分、向量场,无穷级数。每章均有供自学的综合性例题。 本书叙述详细,说理透彻,例题由浅人深,可作为工科大学一年级新生数学课教材,也可作为备考工科硕士研究生的人员和工程技术人员的参考书。
陈天权编著的《数学分析讲义(第3册)》是作者在清华大学数学科学系(1987~2003)及北京大学数学科学学院(2003~2009)给本科生讲授数学分析课的讲稿的基础上编成的。一方面,作者力求以近代数学