ThisbookistheouteofseveralcoursesandseminartalksheldattheInstitutodeMatematicaPuraeAplicada(IMPA)overtheyears.Itisagreatlymodifiedversionofapreviousworkbytheauthors,EquacoesDiferenciaisParciais,Umalntroducao,(ProjetoEuclides,IMPA,1978).Ithasatwofoldpurpose,namelytointroducethestudenttothebasicconceptsofFourieranalysisandprovideillustrationsofrecentapplicationswheretheseconceptswereusedtostudyvariouspropertiesofthesolutionsofsomeimportantnonlinearevolutionequations.
A carefully prepared account of thebasic ideas in Fourier analysis and its applications to the studyof partial differential equations. The author succeeds to make hisexposition accessible to readers with a limited background, forexample, those not acquainted with the Lebesgue integral. Readersshould be familiar with calculus, linear algebra, and plexnumbers. At the same time, the author has managed to includediscussions of more advanced topics such as the Gibbs phenomenon,distributions, Sturm-Liouville theory, Cesaro summability andmulti-dimensional Fourier analysis, topics which one usually doesnot find in books at this level. A variety of worked examples andexercises will help the readers to apply their newly acquiredknowledge.
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation.
本书系统讲解偏微分方程及其定解问题的求解方法,通过大量实例讨论偏微分方程解的性质,特别强调傅里叶级数在求解边值问题中的作用。书中配有丰富的例题与习题,还采用“专题问题”较为系统地研究某个具体问题,补充和扩展了正文内容。 本书内容丰富、推导严密,包含大量物理背景,为理解和掌握偏微分方程提供了有效途径。本书可作为高等院校数学及相关专业学生的偏微分方程课程教材,同时也可作为工程技术人员、科技工作者的参考书。
这是近年来现代分析数学最、最重要的论著之一。近30年来,调和分析历经了巨大发展,涌现了许多新的成果,而此书的主旨正是对这一领域的发展作了全面、系统、深入的阐述。书中主要论述了以下几方面的内容:调和分析经典理论的实变刻画;拟微分算子与奇异积分算子;几乎正交理论;振荡积分理论;极大算子和极大平均理论Heisenberg群上的调和分析等。作者尽量使用手材料,而且尽其所能将每一种证明方法的优越性告诉读者。每章的附录对的研究成果及其在其它学科中的应用进行了详细的评述。总之,这是一部论证严谨、内容丰富而不乏深度的不可多得的学术专著。
本书系统而全面地介绍了复分析的基本理论和方法及其在工程问题上的应用,且注重理论与实际密切结合。全书共分八章:复数,解析函数,初等函数,复积分,解析函数的级数表示,留数理论,共形映射,应用数学的变换。为了便于读者掌握本书的主要内容,在每章后面都给出了小结和参考文献,并且配备了大量的例题和练习,书末附有练习答案和提示。 本书内容丰富,理论严谨,讲解透彻,可作为高等院校高年级本科生和研究生复分析课程的教材或教学参考书,还可供需要复变函数知识的工程技术人员参考。
This book is based on a course I have given five times at the University of Michigan, beginning in 1973. The aim is to present an introduction to a sampling of ideas, phenomena, and methods from the subject of partial differential equations that can be presented in one semester and requires no previous knowledge of differential equations. The problems, with hints and discussion, form an important and integral part of the course. In our department, students with a variety of specialties--notably differential geometry, numerical analysis, mathematical physics, plex analysis, physics, and partial differential equations--have a need for such a course.
本书是世界知名统计学家的力作,主要内容有多元正态分布、方差分析、回归分析、因子分析、椭球等高分布、相依性模式、图模型。附录中还列出了矩阵理论、Wilk似然准则和其他常用检验的显著性水平的分位数。 本书在世界各高等学校中广为采用,是一本经典的多元统计分析课程的教材,也可供相关统计研究人员、应用多元统计的科技工作者参考。