本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
《高等数学习题集精品系列·数学分析例选:通过范例学技巧》通过解答一些特别挑选的范例(共153个题或题组)来提供数学分析习题的某些解题技巧,还给出了20世纪60年代以来的某些研究生入学试题及多种国外资料的杂题(共200个题或题组)。《高等数学习题集精品系列·数学分析例选:通过范例学技巧》包含问题总数超过600个,其中大约450个给出解答或提示。这些例题和杂题有一定的难度。
本书是《圆锥曲线习题集》的下册第1卷,内收有关椭圆的命题500道,抛物线的命题200道,双曲线的命题200边,综合命题100道,另有圆和直线的命题300道,全书合计1 300道,绝大部分是首次发表. 1 300道命题都是证明题,全部附图.全书分成5章45节,有些命题可供专题研究. 本书可作为大专院校师生和中学数学教师的参考用书,也可作为数学爱好者的补充读物.
《工科数学分析》分上、下两册。本书为其下册,共分四章,依次为:多元函数微分学,多元函数积分学,第二型曲线积分与第二型曲面积分、向量场,无穷级数。每章均有供自学的综合性例题。 本书叙述详细,说理透彻,例题由浅人深,可作为工科大学一年级新生数学课教材,也可作为备考工科硕士研究生的人员和工程技术人员的参考书。
编辑手记 本书是向苏联数学成就致敬的项目. 苏联数学进展系列 由不同数学领域的一名或多名资深专家作为主编,内容包含来自俄罗斯的世界数学家的论文,此系列书籍在21卷之后作为 美国数学协会译丛2 的子系列出版,现在更名为 苏联数学进展系列 . 本书为此系列的第13卷《幂等分析》. 幂等分析是数学分析的一个新分支,代数结构也是来源于幂等分析.在经典分析中,主要的代数结构,其支撑作用的基础是一个场的结构(RorC).让我们从场的公理列表中删除存在逆元的要求.由此获得的半环结构太笼统,不能作为分析具有该半环中的值的函数的基础,但是,如果删除的 添加 属性被幂等性所取代,这种结构具有足够的刚性,可以在分析中取得进展,甚至可以远远超前人:在 线性 (在新操作意义上)的情况下,功能分析的许多基本事实的类似物被证明是有效的(并且是非凡的),像Resz和
侯遵泽、杨文采编著的《小波多尺度分析应用》主要介绍作者在小波分析应用中的两个方面所取得的研究成果,即重力场的多尺度分析和电子证件的制作与检测。书中一方面展现了小波多尺度分析在中国大陆布格重力异常分解、密度反演中的应用以及在大别一苏鲁地区、塔里木盆地、华北地区等的应用情况和发挥的作用;另一方面介绍了小波防伪技术在证件制作与检测中的*研究成果和实用性。 《小波多尺度分析应用》适合从事应用数学、计算科学、地球科学、电子与信息科学等学科专业研究的科技人员和高等院校相关专业的师生参考。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
本书是以作者多年来为天津大学非数学类专业博士生讲授非线性数学课程的讲义为基础编写而成,内容包括:空间结构与映射、非线性泛函分析和现代变分法的基础、非线性动力系统基础知识、分岔与奇异性理论以及混沌和分形的基础知识。 本书注重相关概念和理论之间的联系,保持了较严谨的数学体系,将学习非线性理论基础知识与提高现代数学修养这两个目的有机结合,可供高等院校非数学类专业博士生或对数学要求较高的硕士生选用部分或全部内容作为教材或教学参考书,也可供有关教师或科技工作者参考。
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上 为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
这本由孙雨雷和冯君淑主编的《数值分析 第五版 同步辅导及习题全解(新版)》是为了配合清华大学出版社出版的、李庆扬、王能超、易大义主编的《数值分析》(第五版)教材而编写的配套辅导书。 本书共九章,分别介绍数值分析与科学计算引论、插值法、函数逼近与快速傅里叶变换、数值积分与数值微分、解线性方程组的直接方法、解线性方程组的迭代法、非线性方程与方程组的数值解法、矩阵特征值计算、常微分方程初值问题数值解法。全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。 《数值分析 第五版 同步辅导及习题全解(新版)》可作为工科各专业、本科