《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
本书是关于广义函数的本专著。全书共分九章。书中系统总结、高度概括了作者L.施瓦兹当年得以获得“菲尔兹奖”的主要工作。讨论了广义函数的各种基本性质、运算与变换,特别是阐明了著名的Dirac函数其实是一个测度而不是一个函数。从而为Dirac测度在量子力学以及其他学科中的广泛应用打下了坚实的数学基础。 本书包含了当时与广义函数论有关的许多重要的理论和原始思想。在其法文版首次出版后半个多世纪的今天仍有理论价值和参考价值,尤其适合于数学系高年级本科生或研究生研读。
本书是俄罗斯(苏联时期)杰出数学家N.л那汤松的一本重要著作,影响很广。本书在20世纪50-60年代曾是我国高校数学专业实变函数论课程的重要教学参考书。本版系根据原书1 956年第2版中译本,对照原书2008年第5版原文校订后重新出版的。 全书共有18章,主要内容为:可测集与可测函数、勒贝格积分、可和函数与平方可和函数等有界变差函数与斯蒂尔切斯积分、*连续函数与勒贝格不定积分,以及与上述内容对应的,在多元函数情形和无界函数情形的扩展;以小字排印的有:奇异积分与三角级数、集函数及其在积分论中的应用、超限数、函数的贝尔分类、勒贝格积分的推广(包括佩龙积分、当茹瓦积分和积分的抽象定义等)。这些内容虽然超出了教学大纲,但其丰富的材料为其他函数论方面论著中所不多见,有较大参考价值。为内容叙述的需要,还专辟一章(
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设