本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
本书按照一般的微积分学教材的编排方式,系统地论述了基于MATLAB 语言编程的方法来实现微积分问题的求解。全书内容包括函数与序列的描述及图形绘制、极限问题的求解、导数与微分问题的求解、积分问题的求解、函数的逼近与级数求和、数值导数与数值积分等。此外,书中还概括性地介绍了积分变换、分数阶微积分等内容。 本书可以作为高等学校理工科各类专业的本科生与研究生学习计算机数学语言(MATLAB)的教材,也可以作为一般读者学习微积分学的辅助教材,帮助读者从另一个角度认识微积分学问题的求解方法,并可以作为查询微积分数学问题求解方法的工具书。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书具有以下特点:广泛使用表格法,使有关内容、解题方法和技巧一目了然;从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用;用系列专题分析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种 有趣、 易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的*进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了国内外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究