本书是模式识别和神经网络方面的名著,讲述了模式识别所涉及的统计方法、神经网络和机器学习等分支。书的内容从介绍和例子开始,主要涵盖统计决策理论、线性判别分析、弹性判别分析、前馈神经网络、非参数方法、树结构分类、信念网、无监管方法、探寻优良的模式特性等方面的内容。 本书可作为统计与理工科研究生课程的教材,对模式识别和神经网络领域的研究人员也是极有价值的参考书。
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。
《数学建模》根据作者陈光亭和裘哲勇多年的教学经验编写而成,主要内容包括数学规划与组合优化建模、方程建模、方法建模、模糊和灰色系统建模,以及常用数学软件与算法等,涵盖了数学建模常用的方法和工具。每部分内容安排上不追求知识的系统性和完整性,更多地以大量建模问题实例和涉及面较广的背景素材引出需要的方法,并在此基础上简要介绍相关基础知识和基本方法的使用。各部分内容之间具有相对独立性,有利于教师在教学中根据不同的需求以及教学时数的多少进行取舍。 《数学建模》可作为一般院校大学生 数学建模 课程的教材,也可作为指导大学生数学建模竞赛的培训参考书,以及供相关科技工作者参考使用。
《证据网络推理学习理论及其应用》提出并建立了一套完整的证据网络理论和方法体系,对证据网络的定义、结构建模、参数表示、不同参数模型下的推理及证据网络参数和结构学习的相关理论和方法展开了深入论述。《证据网络推理学习理论及其应用》共分为7章,内容包括:不确定性建模理论,不确定性推理方法,证据网络提出的价值与意义,证据网络模型的基本概念、特点、关键要素和建模流程,证据网络的结构与参数,证据网络的推理问题,不同参数模型下的推理策略与算法,证据网络参数学习模型与计算方法,证据网络信度规则模型库结构学习,以及相关应用研究等。《证据网络推理学习理论及其应用》主要面向管理科学与工程、控制科学与工程、信息技术等领域的学者及研究生,也可供相关领域的研究人员阅读参考。