《证据网络推理学习理论及其应用》提出并建立了一套完整的证据网络理论和方法体系,对证据网络的定义、结构建模、参数表示、不同参数模型下的推理及证据网络参数和结构学习的相关理论和方法展开了深入论述。《证据网络推理学习理论及其应用》共分为7章,内容包括:不确定性建模理论,不确定性推理方法,证据网络提出的价值与意义,证据网络模型的基本概念、特点、关键要素和建模流程,证据网络的结构与参数,证据网络的推理问题,不同参数模型下的推理策略与算法,证据网络参数学习模型与计算方法,证据网络信度规则模型库结构学习,以及相关应用研究等。《证据网络推理学习理论及其应用》主要面向管理科学与工程、控制科学与工程、信息技术等领域的学者及研究生,也可供相关领域的研究人员阅读参考。
本教材主要介绍近年来产生发展的多种智能优化算法。包括为人熟知的遗传算法、禁忌搜索算法、模拟退火算法和蚁群优化算法;近年来已成为研究热点的粒子群优化算法;还有尚待普及的捕食搜索算法和动态环境下的进化计算。书中讨论这些算法的产生和发展、算法的基本思想和理论、基本构成、计算步骤和主要的变形以及数值例子和实际应用。为了方便读者学习,各章之后还附有精选的习题、思考题及相关的参考文献。 本教材是为“智能优化方法”这门研究生课程编写的,可作为系统工程、管理工程、计算机、自动化、人工智能以及其他应用优化算法专业的研究生及高年级的本科生教材,也可供相关专业的研究人员和工程技术人员参考。
离散事件系统是指其状态变量只在某些离散时间点上发生变化的系统。大多数离散事件系统本质上属于人造系统,即包含人为规则或人为机制的“非物理型”系统。 本书共12章。章概述,从概念上讨论DEVS的内涵及其特征;第2章通过三个简单的实例讨论了DEVS建模与仿真的各个步骤,以便读者了解DEVS建模与仿真的基本要素,还对目前流行的离散事件系统建模与仿真软件进行了介绍;第3章介绍主要的数学基础,即概率论与数理统计的基本知识;第4章介绍变量建模及其检验方法;第5章介绍仿真中产生变量的方法和技术;第6章从系统角度讨论建模与仿真问题;第7章对四类策略,即事件调度法、活动扫描法、三阶段法,以及进程交互法,分别进行了规范化讨论;第8章讨论了单系统仿真运行结果分析及实验设计技术;第9章讨论多系统比较技术,还介绍了基于仿真的优
《谁排 ?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排 ?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。
本书系统介绍了预测信息组合技术、预测方法组合技术、预测结果组合技术以及组合预测的基本理论,回答了为什么要进行组合预测、什么时候进行组合预测、怎样实现组合预测等具有重要实践意义的问题,是一部现代组合预测理论和方法的集大成之作。
《谁排 ?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排 ?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。
本书将通过九大卷22个章节包含肥胖基础、营养减肥、饮食减肥、西医减肥、中医减肥、减肥新技术、减肥误区,系统、全面的介绍减肥对于现在人的重要性,它是一部集学习、认知、普及可操作性于一体的热销读物。
《马尔可夫决策过程理论与应用》从马氏决策的一般理论出发,介绍了马氏决策的基本概念,给出了决策过程的表述方法并介绍了不同准则条件下的基本理论,还给出了作者对一些实际问题的研究心得,为读者提供参考. 《马尔可夫决策过程理论与应用》在《实用马尔可夫决策过程》一书的基础上增加了 Bandit 过程、部分可观察过程、软件可靠性建模分析以及大规模计算方法等章节,为读者提供更为宽阔的视野.
《马尔可夫决策过程理论与应用》从马氏决策的一般理论出发,介绍了马氏决策的基本概念,给出了决策过程的表述方法并介绍了不同准则条件下的基本理论,还给出了作者对一些实际问题的研究心得,为读者提供参考. 《马尔可夫决策过程理论与应用》在《实用马尔可夫决策过程》一书的基础上增加了 Bandit 过程、部分可观察过程、软件可靠性建模分析以及大规模计算方法等章节,为读者提供更为宽阔的视野.