Thiook is dedicated to our wives Helen, Mary Lou and Song and our families for their support and patience during the preparation of thiook, and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method. In particular we would like to mention Professor Eugenio Oniate and his group at CIMNE for their help, encouragement and support during the preparation process.
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书建立了一种求解N-S方程及湍流模型的分裂有限元方法。该方法有效克服了传统有限元求解N-S方程时存在的非线性效应、不可压缩性约束和计算量大的困难,为解决大气运动、海洋流动、轴承润滑等湍流运动提供了关键的数值模拟技术和方法支撑。
这是一部非常成功的学术著作,它介绍了科学计算需要的各类数值分析。不但在严谨的数学科学背景下进行讨论,而且给出了数值分析方法的严格证明。本书适合作为数学、工程、计算机科学和其他相关专业高年级本科生或研究生数值分析课程的教材。本书涵盖了计算中数值分析的广泛主题,除数值分析的基础知识外,还涉及线性代数和非线性代数系统统的求解、数值微分与数值积分、常微分方程和偏微分方程的数值解、函数逼近等方面的内容,增加了优化方面的内容和相关信息的网络资源。书中并不详细分析算法,而是着重讲解相关的理论基础。
Thiook is dedicated to our wives Helen, Mary Lou and Song and our families for their support and patience during the preparation of thiook, and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method. In particular we would like to mention Professor Eugenio Oniate and his group at CIMNE for their help, encouragement and support during the preparation process.
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
Thiook is dedicated to our wives Helen, Mary Lou and Song and our families for their support and patience during the preparation of thiook, and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method. In particular we would like to mention Professor Eugenio Oniate and his group at CIMNE for their help, encouragement and support during the preparation process.
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。 本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
本书是作者在东南大学讲授“现代数值计算方法”的讲稿的基础上形成的。本书涵盖了经典的数值方法的大部分内容,同时也包涵了近年来发展起来的一些新方法和对一些新的应用问题的处理,如MATLAB的使用,高维积分计算的统计方法等。本书侧重算法的有效实现,给出了很多算法的FORTRAN程序或者MATLAB程序,并将它们用于处理一些具体的问题。本书共分6章,分别介绍数值计算的基本原理、矩阵分析基础、有限元方法的基本原理和应用、边界积分方程及其应用、积分计算的近代方法和快速Fourier变换和小波变换。 本书适合高等院校数学系研究生和工科相关专业研究生作为教材,也可供大学教师和科研人员阅读参考。
《HyperWorks进阶教程系列:RADIOSS理论基础与工程应用》主要介绍了RADIOSS的理论方法、基础练习、使用技巧和工程应用。《HyperWorks进阶教程系列:RADIOSS理论基础与工程应用》的主要内容包括RADIOSS有限元求解器介绍、线性静力分析、非线性静力分析、线性屈曲分析、RADIOSS惯性释放分析、模态分析、频率响应分析、瞬态响应分析、响应谱分析和随机振动分析、热-热力耦合分析、疲劳分析、NVH分析、RADIOSS Block概述、显式非线性基本理论、常用单元类型、材料与失效模型、运动约束、接触、气囊模型、SPH和ALE求解流固耦合问题、RADIOSS Block隐式分析。 《HyperWorks进阶教程系列:RADIOSS理论基础与工程应用》中实例所涉及的模型文件和结果文件,读者可在随书附赠的光盘中找到。 《HyperWorks进阶教程系列:RADIOSS理论基础与工程应用》由Altair中国公司技术团队编写,是Altair中国公司的Hy
本书以作者20多年潜心研究的成果为主线,结合外相关研究的前沿思想和成果,较系统地介绍光滑约束优化快速算法的理论构架、全局收敛性及收敛速度的分析论证,并对算法进行了大量的数值试验和分析。全书分为12章:—3章介绍相关基础知识及快速算法模型框架,第4—7章讨论一般优化和极大极小优化的序列二次规划算法,第8—10章论述序列线性方程组算法,1章研究互补约束优化的序列二次规划算法和序列线性方程组算法,2章论述序列二次约束二次规划算法。 本书可作为运筹学、计算数学、管理科学、工程技术等专业的研究生教学或辅导用书,亦可作为相关领域的科研及工程技术人员的参考用书。
本书全面、系统地介绍了计算复杂性理论的基本内容与各种NPC问题、NP难问题等复杂问题的计算机求解方法。前四章分别简要介绍了线性规划、多面体理论、网络规划与动态规划等预备知识。第五至九章具体介绍了计算复杂性理论。包括复杂性的定义与分类,证明一个问题为P类或NPC类的基本方法,NPC记理论在分析、求解问题中的应用与近似算法的性能度量等。第十至十六章则主要以整数规划为框架,详细论述求解NPC及NP难问题各种不同形式的算法与近似算法。 本书可作为信息与计算科学、应用数学、计算机、管理科学等专业的研究生教材或本科生的选修课教材,也可供有关的科研人员参考。
这是一部非常成功的学术著作,它介绍了科学计算需要的各类数值分析。不但在严谨的数学科学背景下进行讨论,而且给出了数值分析方法的严格证明。本书适合作为数学、工程、计算机科学和其他相关专业高年级本科生或研究生数值分析课程的教材。本书涵盖了计算中数值分析的广泛主题,除数值分析的基础知识外,还涉及线性代数和非线性代数系统统的求解、数值微分与数值积分、常微分方程和偏微分方程的数值解、函数逼近等方面的内容,增加了优化方面的内容和相关信息的网络资源。书中并不详细分析算法,而是着重讲解相关的理论基础。
《线性方程组新解及应用》以线性方程组理论为主题,系统介绍了线性方程组具有求解公式的推导、有无穷多解时通解公式的构造以及无解时最小二乘解的表示等问题,并应用于水手分桃、幻方构造、点灯游戏等趣味问题以及超平面拟合、网页排序、机器翻译等应用课题;以向量与矩阵为工具,反复使用矩阵分块与矩阵分解等技术,使有关问题得到统一而简洁的处理,从简单到复杂,从特殊到一般,从特例中归纳出一般性的结论,从类比联想中寻求启发与答案,不断尝试转换思考问题的角度与方法,这些做法贯彻全书的所有章节,有利于理解隐藏在理论背后的思想与本质特征,并成为《线性方程组新解及应用》的鲜明特色。
THE major part of thiook (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which haeen only slightly changed in the present edition.
本书是一部为物理学专业的高年级本科生和研究生设计的,学习重整化群和场论教程,也是学习凝聚态和粒子物理的资料。本书简明扼要,开门见山、直奔主题自由能量的环膨胀,即的背景场理论。这一很有力的方法,尤其是在处理对称和统计力学的时候尤为重要。专著自由场的讲述,避免大篇幅赘述有关场理论技巧的发展,接着全面呈现重整化的必需性。 目次:一些结果;有序参数、对称性破缺性导论;Ising模型下的物理情形例子;Ising模型的一些结果;高温和低温扩张;相变有关的几何问题;临界行为的现象学描述;平均场理论;平均场之外;重整化群导论;φ4理论用的重整化群;重整化理论;Goldstone模;大n。 读者对象:物理专业的高年级本科生、研究生,以及对重整化、场论、凝聚态物理和粒子物理感兴趣的读者。
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。