全国竞赛组委会数年来先后出版的获奖作品选编不益于今后参赛学生开拓设计思路、提供撰写设计报告的参考,而且已成为很多高等学校信息电子类专业本科综合实验教学、课程设计乃至毕业设计的重要参考文献。全国电子设计竞赛组委会编著的《2011年全国电子设计竞赛获奖作品选编》仅编入了2011年全国电子设计竞赛中获得全国一等奖的部分作品,共计45篇,内容涉及8个竞赛题目,其中A题至E题为本科组竞赛题目,F题至H题为高职高专组竞赛题目。书中每篇作品均有“专家点评”。
本书是一部为物理学专业的高年级本科生和研究生设计的,学习重整化群和场论教程,也是学习凝聚态和粒子物理的资料。本书简明扼要,开门见山、直奔主题自由能量的环膨胀,即的背景场理论。这一很有力的方法,尤其是在处理对称和统计力学的时候尤为重要。专著自由场的讲述,避免大篇幅赘述有关场理论技巧的发展,接着全面呈现重整化的必需性。 目次:一些结果;有序参数、对称性破缺性导论;Ising模型下的物理情形例子;Ising模型的一些结果;高温和低温扩张;相变有关的几何问题;临界行为的现象学描述;平均场理论;平均场之外;重整化群导论;φ4理论用的重整化群;重整化理论;Goldstone模;大n。 读者对象:物理专业的高年级本科生、研究生,以及对重整化、场论、凝聚态物理和粒子物理感兴趣的读者。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。 本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
本书在简要阐述智能优化方法相关理论的基础上,介绍了蚁群智能优化方法的基本原理与算法主要要素等基本内容。同时,介绍蚁群智能优化方法在旅行商问题、背包问题、定向问题、属性约简、卫星资源调度问题以及多目标组合优化问题等复杂组合优化问题的应用示例,详细阐述蚁群智能优化方法在具体应用中的的基本设计方法以及算法性能改善的有效途径。本书适合作为从事智能优化方法及其应用研究的相关科技工作者、专业技术人员的参考书,也可作为计算机学科、控制科学等专业研究生和高年级本科生学习蚁群智能优化方法的指导用书。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书系统介绍线性规划、整数线性规划、无约束**化和约束**化的基本理论和方法,还介绍经济、金融、信息处理、统计、几何等领域中的具体优化模型,以及MATLAB软件包中部分优化工具箱的操作方法.
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
全国竞赛组委会数年来先后出版的获奖作品选编不益于今后参赛学生开拓设计思路、提供撰写设计报告的参考,而且已成为很多高等学校信息电子类专业本科综合实验教学、课程设计乃至毕业设计的重要参考文献。全国大学生电子设计竞赛组委会编著的《2011年全国大学生电子设计竞赛获奖作品选编》仅编入了2011年全国大学生电子设计竞赛中获得全国一等奖的部分作品,共计45篇,内容涉及8个竞赛题目,其中A题至E题为本科组竞赛题目,F题至H题为高职高专组竞赛题目。书中每篇作品均附有“专家点评”。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础介绍有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。
AnearlyexperimentthatconceivesthebasicideaofMonteCarlopu-tatiosisknownas"Buffon'needle",firststatedbyGeorgesLouisLeclercComtedeBuffonin1777.Inthiswell-knownexperiment,onthrowsaneedleoflengthlontoaflatsurfacewithagridofparallellineswithspacing.Itiseasytoputethat,underidealconditions,thechancethattheneedlewillintersectoneofthelinesin.Thus,ifweleppNbetheProportionof"intersects"inNthrows,wecanhaveanestimateofπaswjocjwill"converge"toπasNincreasestoinfinity.
With the advent of powerful puting tools and numerous advances in mathematics, puter science and cryptography, algorithmiumber theory haee an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful algorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of applications, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ...
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书阐述了如何在信息处理、数值分析和数学建模中使用小波作为分析工具。本书把信号展开为基和框架,利用滤波器组作为算法描述。这种统一的观点填补了现有小波文献中的不足。本书给出经典信息处理问题的以点,特别强调从应用角度出发的信号压缩,涉及当前研究的成果。本书可作为高年级本科生和研究生的,适用于信息处理、无线电通信、计算机科学和应用数学等专业,也适于从事相关领域的研究人员和从业人员阅读。
本书是国防工业出版社出版的教材《数值计算方法》的配套用书,內容分为数值计算方法概论、非线性方程的数值解法、线性方程组的直接法、线性方程组的迭代法、插值法与二乘拟合法、数值积分与数值微分、常微分方程的数值解法、矩阵特征值与特征向量的计算等8章.每章由内容提要、例题分析、习题选解、综合练习和实验指导五个部分组成,在附录中给出了综合练习题目的解答,并给出了五套模拟试卷及参考答案. 本书可作为普通本科院校理工科专业学生学习数值分析或计算方法课程的参考教材,也可供从事科学与工程计算的科技人员学习,对备考研究生的读者也颇有参考价值。